
The XML FAQ

Frequently-Asked Questions about the
Extensible Markup Language

v5.00 (2011-01-10)

Peter Flynn (ed.)

Contents

Summary . iii
Current revision . v
Legal stuff . vi

A Basics: general information about XML 1
A.1 What is XML? . 1
A.2 What is a markup language? . 1
A.3 What is XML for? . 1
A.4 What is SGML? . 2
A.5 What is HTML? . 3
A.6 Aren’t XML, SGML, and HTML all the same thing? 3
A.7 Who is responsible for XML? . 4
A.8 Why is XML such an important development? 4
A.9 Why not just carry on extending HTML? 5
A.10 Why should I use XML? . 5
A.11 Where do I find more information about XML? 6
A.12 Where can I discuss implementation and development of XML? . 7
A.13 What is the difference between XML and C or C++ or Java? . . . 9
A.14 Does XML replace HTML? . 9
A.15 Is there an XML version of HTML? 10

B Existing users (including everyone who uses a browser) 11
B.1 What do I have to do to use XML? 11
B.2 What does an XML document actually look like (inside)? 11
B.3 Should I use XML instead of HTML? 13
B.4 Someone sent me an XML file. How do I read it? 13
B.5 How do I control formatting and appearance? 14
B.6 Where can I get an XML browser? 16
B.7 How do I execute or run an XML file? 18
B.8 Do I have to switch from SGML or HTML to XML? 19
B.9 Can I use XML for ordinary office applications? 19

C Authors (including writers of HTML and Web page owners) 21
C.1 Do I have to know HTML or SGML before I learn XML? 21
C.2 How does XML handle white-space in my documents? 21
C.3 Which parts of an XML document are case-sensitive? 22
C.4 How can I make my existing HTML files work in XML? 22
C.5 If XML is just a subset of SGML, can I use XML files directly with

existing SGML tools? . 25
C.6 I’m used to authoring and serving HTML. Can I learn XML easily? 26
C.7 Can XML use non-Latin characters? 26
C.8 What’s a Document Type Definition (DTD) and where do I get one? 28

i

C.9 Does XML let me make up my own tags? 29
C.10 How do I create my own document type? 29
C.11 How do I write my own DTD? . 30
C.12 Can a root element type be explicitly declared in the DTD? 31
C.13 I keep hearing about alternatives to DTDs. What’s a Schema? . . 31
C.14 How will XML affect my document links? 33
C.15 Can I encode mathematics using XML? 34
C.16 How does XML handle metadata? 34
C.17 How do I use graphics in XML? . 35
C.18 What is parsing and how do I do it in XML? 37
C.19 How do I include one XML file in another? 38
C.20 When should I use a CDATA Marked Section? 40
C.21 How can I handle embedded HTML in my XML? 40
C.22 What are the special characters in XML? 42

D Developers and Implementors . 44
D.1 Where’s the spec? . 44
D.2 I’m trying to understand the XML Spec: why does it have such

difficult terminology? . 44
D.3 What are these terms DTDless, valid, and well-formed? 45
D.4 Which should I use in my DTD/Schema, attributes or elements? . 48
D.5 What has changed between SGML and XML? 49
D.6 Can I use JavaScript, ActiveX, etc in XML files? 50
D.7 Can I use Java to create or manage XML files? 50
D.8 How do I get XML into or out of my database? 51
D.9 What’s a namespace? . 51
D.10 What XML software is available? 52
D.11 What is my information? DATA or DOCUMENT? 53
D.12 Do I have to change any of my server software to work with XML? 55
D.13 Can I still use server-side inclusions? 56
D.14 Can I (and my authors) still use client-side inclusions? 56
D.15 I have to do an overview of XML for my manager/client/investor/advisor.

What should I mention? . 56
D.16 Is there a conformance test suite for XML processors? 58
D.17 I’ve already got SGML DTDs: how do I convert them for use with

XML? . 59
D.18 How do I include one DTD (or fragment) in another? 60
D.19 How can I include a conditional statement in my XML? 61
D.20 What’s the story on XML and EDI? 62

E Appendices . 63
E.1 References . 63
E.2 How far are we going? . 64
E.3 Not the XML FAQ . 65
E.4 Lost XML software . 77
E.5 Revision history . 78

ii

Summary

This is the list of Frequently-Asked Questions about the Extensible Markup Language
(XML). It has answers to most of the common questions people ask about XML. If
you are seeking answers to questions about related areas such as HTML, SGML, CGI
scripts, PHP, JSP, Java, databases, or penguins, you may find some pointers, but you
should probably look elsewhere as well.

The FAQ is intended as a first resource for users, authors, developers, and the
interested reader. Details of its organisation, contributors, availability, translations,
and revisions are in the Admin sections. Updates to the FAQ are notified to the
mailing lists and newsgroups listed in Where can I discuss implementation and
development of XML? [p.7].

The full document is available for download in many different formats: see
Availability [p.iv] for a list.

WTF

Seán McGrath1 suggested2: ‘It would be great if FAQs had a WTF section to direct the
eyes of the exasperated to Q’s with a high desperation index :-)’, so here are the top
dozen most-wanted:

</> What is XML? [p.1]
</> How do I control formatting and appearance? [p.14]
</> What’s a Document Type Definition (DTD) and where do I get one? [p.28]
</> Where can I get an XML browser? [p.16]
</> What is SGML? [p.2]
</> What are the special characters in XML? [p.42]
</> What is a markup language? [p.1]
</> What is XML for? [p.1]
</> What XML software is available? [p.52]
</> I keep hearing about alternatives to DTDs. What’s a Schema? [p.31]
</> What’s a namespace? [p.51]
</> Not the XML FAQ [p.65]

Organisation

This FAQ was originally maintained on behalf of the World Wide Web Consortium’s
XML Special Interest Group. It is divided into four sections: Basics [p.1], Users [p.11],
Authors [p.21], and Developers [p.44]. The questions are numbered independently
within each section. As the numbering may change with each version, comments
and suggestions should refer to the version number (see Revision History [p.v]) as well
as the section and question number. See the para below [p.vi] for details of citation
and reference.

Please submit bug reports, suggestions for improvement, and other comments about
this FAQ only to the editor3. Questions and comments about XML should go to the

2http://seanmcgrath.blogspot.com
2http://seanmcgrath.blogspot.com/#112988775713608464
3xmlfaq@silmaril.ie

iii

relevant mailing list or newsgroup [p.7]. Comments about the XML Specification
[p.44] itself and related specifications should be directed to the W3C4.

Updates

In minor updates the following symbols are used:

</> Additions since the last version are indicated with a plus sign.

</> Changes since the last version are indicated with a plus/minus sign.

</> Deletions retained temporarily for information are indicated with a minus sign.

In major updates these are not used because almost every question will have been
changed.

Availability

This XML document is at http://xml.silmaril.ie/. It is XML served converted to
HTML by Saxon, so what you read online is HTML in your browser.

</> You can download the unconverted file5 (avoiding the .xml filetype which
over-enthusiastic browsers want to usurp¯just rename it after downloading);

</> The DTD6 is a lightly modified version of DocBook7;

</> There is a MindMap version available by clicking on the MindMap logo in the
banner at the top of the page. This is an XML format used by FreeMind8 amd
other MindMap software.

</> There are XSL stylesheets9 for the conversion to HTML and to make the PDF
and PostScript versions;

</> A notification of new versions is posted periodically to the comp.text.xml
Usenet newsgroup, the XML-L10, xml-dev11, and XSL-List12 mailing lists, and
to the XML/XSL forum13 on LinkedIn.

</> for printed copies there are versions for A4 PostScript14, A4 PDF15, Letter
PostScript16 and Letter PDF17 available.

</> WAP (if anyone’s still using it), OEB (eBook), and cHTML versions have been
proposed for your handheld devices, and I’m open to offers if anyone wants to
write app code.

4http://www.w3.org/
5http://xml.silmaril.ie/faq.sgml
6http://xml.silmaril.ie/faq.dtd
7http://www.docbook.org/
8http://freemind.sourceforge.net/
9http://xml.silmaril.ie/webfaq.xsl.tar.gz

10http://listserv.heanet.ie/xml-l.html
11http://lists.xml.org/archives/xml-dev/
12http://www.mulberrytech.com/xsl/xsl-list
13http://www.linkedin.com/groups?gid=664967
14http://xml.silmaril.ie/faq_a4.ps
15http://xml.silmaril.ie/faq_a4.pdf
16http://xml.silmaril.ie/faq_letter.ps
17http://xml.silmaril.ie/faq_letter.pdf

iv

The FAQ is also available in carbon-based toner on flattened dead trees by sending
€10 ($15 or equivalent in any convertible currency) to the editor18 (email first to
check rates and postal address).

Translations

Those I know about are in:

</> German19 (partial translation of some questions) [Karin Driesen];

</> Amharic20 [Abass Alamnehe];

</> Japanese21 [Makoto Murata];

</> Spanish22 (currently inaccessible) [Jaime Sagarduy];

</> Korean23 (currently inaccessible). [Kangchan Lee];

</> Chinese24 (currently inaccessible) [Neko]. Also in Chinese25 (also inaccessible)
[Jiang Luqin];

</> French26 [Jacques André];

</> Czech27 [Miloslav Nic].

I would be grateful if the translators of those copies which have become inaccessible
would contact me with the new URI.

Current revision

Earlier: 0.0 0.1 0.2 0.3 0.4 0.5 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0 2.1 3.0 3.01 3.02 4.0
4.1 4.2 4.3 4.31 4.32 4.33 4.34 4.35 4.36 4.37 4.38 4.39 4.4 4.41 4.5 4.51 4.52 4.53
4.54 4.55 4.56 4.57 4.58 (details on p.78).

5.00 (2011-01-09)

Removed obsolete information and links, reformatted presentation (thanks to Parker
and the PWA for help with the CSS). Moved questions about Java and Javascript
from Authors to Developers, and question on running XML to Basics. Renamed IDs
appendix to appendices, contrib to contributions, and revhist to revisions so that
sectioning can be done by ID rather than number and title. Rewrote search script.
Updated events. transformation also updated and the PDFs reset.

18xmlfaq@silmaril.ie
19http://www.oreilly.de/xml/xml_faq_fragen.html
20http://www.senamirmir.com/xml/faq/xml_faq_amh.html
21http://www.fxis.co.jp/DMS/sgml/cafe/library/etc/xmlfaq.html
22http://slug.ctv.es/~olea/sgml-esp/xfaq15.html
23http://xml.t2000.co.kr/faq/index.html
24http://zxd.webjump.com/xml.html
25http://weblab.crema.unimi.it/xmlzh/XML_FAQ.htm
26http://www.gutenberg.eu.org/pub/GUTenberg/publications/HTML/FAQXML/faqxml-fr.html
27http://zvon.vscht.cz/ZvonHTML/Translations/xmlFAQ/front_all.html

v

Legal stuff

This document is joint copyright © 1996˘2011 by Silmaril Consultants and the
editor and is released under the terms of the GNU Free Documentation License (see
below). Quotations of the contributions of others remain copyright of the individual
contributors. You may copy and distribute this document in any form provided you
acknowledge this source and the individual (in the case of a contribution) [see the
para below [p.vi] for how] and don’t try to pretend you or someone other than the
author wrote it. If you want to republish or reprint the FAQ in bulk, or copy all or
part of it onto another web site, please ask the editor first to make sure you get the
right edition, to make provision for periodic updating, and to ensure you use the
correct legal wording.

‘Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is available here28.
You are allowed to distribute, reproduce, and modify it without fee or further
requirement for consent subject to the conditions in the section on Modifications29.’

The editor and contributing authors assert their right to be identified as the editor
and contributing authors of this document.

For citations of this FAQ, use:

Flynn, P (Ed.), The XML FAQ v.5.00, Cork, 2011-01-09, http://xml.silmaril.ie/,
Q.xxx ‘[insert the question title here]’

In bibliographic referencing systems this would be something like this (using BIB as
an example)'

&

$

%

@Booklet{xmlfaq,
title = {The XML FAQ},
editor = {Peter Flynn},
howpublished = {Webpage},
address = {Cork},
month = {},
year = ,
edition = {v},
url = {http://xml.silmaril.ie/},
pages = {Q.#}

}

A suitable format for citing individually-authored fragments would be:

AN Other, ‘Title of question’. In Flynn, P (Ed.), The XML FAQ v.5.00, Silmaril
Consultants, Cork, January 2011, Q.xxx. http://xml.silmaril.ie/question.html

In bibliographic referencing systems this would be something like this (again using
BIB as an example)

28http://www.gnu.org/licenses/fdl.html
29http://www.gnu.org/licenses/fdl-howto-opt.html

vi

'

&

$

%

@InCollection{xmlfaq,
author = {AN Other},
title = {Title of question},
booktitle = {The XML FAQ},
publisher = {Silmaril Consultants},
month = {},
year = ,
editor = {Peter Flynn},
volume = {section number},
number = {question number},
address = {Cork},
url = {http://xml.silmaril.ie/section/question/},
edition = {v.}

}

vii

A Basics: general information about XML

A.1 What is XML?
The Extensible
Markup Language.

XML is the Extensible Markup Language. It improves the functionality of the Web by
letting you identify your information in a more accurate, flexible, and adaptable way.

It is extensible because it is not a fixed format like HTML (which is a single,
predefined markup language). Instead, XML is a metalanguage¯a language for
describing other languages¯which lets you design your own markup languages for
limitless different types of documents. XML can do this because it’s written in SGML
[p.2], the international standard metalanguage for text document markup (ISO
8879).

A.2 What is a markup language?
A way of
describing what’s
what in a
document.

A markup language is a set of words and symbols for describing the identity or
function of the component parts of a document (for example ‘this is a paragraph’,
‘this is a heading’, ‘this is a list’, ‘this is the caption of this figure’, etc). Programs can
use markup with a stylesheet to transform the document into output for screen,
print, audio, video, Braille, or reprocessable data formats.

Some markup languages (especially those used in wordprocessors) only describe
appearances instead (‘this is italics’, ‘this is bold’, ‘this has 3mm space below’, etc), so
these systems can only be used for display, and are not easily re-usable for anything
else.

XML is sometimes referred to as ‘self-describing’ because the names of the markup
elements can represent the type of content they hold (eg title, chapter, link, etc).

A.3 What is XML for?
XML is for
identification,
transmission, and
storage.

Goal. . . to enable generic SGML to be served, received, and processed on the Web in
the way that is now possible with HTML. XML has been designed for ease of
implementation and for interoperability with both SGML and HTML.

Despite early attempts30, browsers never allowed other SGML, only HTML (although
there were plugins [E.4, p.78]). Browser vendors also allowed (even encouraged)
HTML to be corrupt or broken in order to make it easier. This enabled HTML to
become widespread, but held development back for over a decade by making it
impossible to program for it reliably. XML fixes that by making it compulsory to
stick to the rules, and by making the rules much simpler than SGML.

But XML is not just for Web pages: in fact it’s very rarely used on its own for Web
pages because browsers still don’t provide reliable support for it. Common uses for
XML include:

Information identification You can define your own markup, so you can define
meaningful names for all your information items.

30http://www.oasis-open.org/cover/sgmlwww.html

1

Information storage Because XML is portable and non-proprietary, it can be used
to store information across any platforms. Because it is backed by an
international standard, it will remain accessible and processable as a data
format.

Information structure XML structures can nest, so they can be used to store and
identify any kind of hierarchical information, especially long, deep, or complex
document sets or data sources, which makes it ideal for an
information-management back-end to serving the Web. This is one if its most
common Web applications, with a transformation system to serve it as HTML
until such time as browsers are able to handle XML consistently.

Publishing The original goal of XML as defined in the quotation at the start of this
section. Combining the three previous topics (identity, storage, and structure)
means it is possible to get all the benefits of robust document management and
control (with XML) and publish to the Web (as HTML) as well as to paper (as
PDF) and to other formats (eg Braille, Audio, etc) from a single source
document by using the appropriate stylesheets.

Messaging and data transfer XML is also very heavily used for enclosing or
encapsulating information in order to pass it between different computing
systems which would otherwise be unable to communicate because of their
proprietary or secret data formats. By providing a lingua franca for data
identity and structure, XML provides a common envelope for inter-process
communication (messaging).

Web services Building on all of these, as well as its use in browsers,
machine-processable data can be exchanged between consenting systems, where
before it was only comprehensible by humans (HTML). Weather services,
e-commerce sites, blog newsfeeds, AJaX [E.3, p.72] sites, and thousands of
other data-exchange services use XML for data management and transmission,
and the web browser for display and interaction.

A.4 What is SGML?
Standard
Generalized
Markup Language,
ISO 8879:1986

SGML is the Standard Generalized Markup Language (ISO 8879:198631), the
international standard for defining descriptions of the structure of different types of
electronic document. There is an SGML FAQ from David Megginson at
http://math.albany.edu:8800/hm/sgml/cts-faq.html; and Robin Cover’s SGML Web
pages are at http://www.oasis-open.org/cover/general.html. For a little light relief,
try Joe English’s ‘Not the SGML FAQ’ at
http://www.flightlab.com/~joe/sgml/faq-not.txt.

SGML is very large, powerful, and complex. It has been in heavy industrial and
commercial use for nearly two decades, and there is a significant body of expertise
and software to go with it.

XML is a lightweight cut-down version of SGML which keeps enough of its
functionality to make it useful but removes all the optional features which made
SGML too complex to program for in a Web environment.

31http://www.iso.ch/

2

Note

ISO standards like SGML are governed by the International Organization for
Standardization in Geneva, Switzerland, and voted into or out of existence by
representatives from every country’s national standards body.

If you have a query about an international standard, you should contact your national
standards body for the name of your country’s representative on the relevant ISO
committee or working group.

If you have a query about your country’s representation in Geneva or about the
conduct of your national standards body, you should contact the relevant government
department in your country, or speak to your public representative.

The representation of countries at the ISO is not a matter for this FAQ. Please do not
submit queries to the editor about how or why your country’s ISO representatives have
or have not voted on a specific standard.

A.5 What is HTML?
HyperText
Markup Language,
RFC 1866, the
language of Web
pages.

HTML is the HyperText Markup Language32 (RFC 186633), which started as a small
application of SGML [p.2] for the Web, originating with Tim Berners-Lee at CERN34

in 1989˘90.

It defines a very simple class of report-style documents, with section headings,
paragraphs, lists, tables, and illustrations, with a few informational elements, but
very few presentational elements35, plus some hypertext and multimedia. See the
question on extending HTML [p.5]. The current recommendation is to use the XML
version, XHTML [p.10]. There is a HTML and XHTML FAQ maintained by Steven
Pemberton at http://www.w3.org/MarkUp/2004/xhtml-faq

Recent moves the W3C have led to the development of a revision of HTML called
HTML536. There is an explanation37 from Elliotte Rusty Harold, and a FAQ38 from
the WhatWG.

A.6 Aren’t XML, SGML, and HTML all the same thing?
No, SGML and
XML are
metalanguages.
HTML is an
application of
them.

Not quite; SGML [p.2] is the mother tongue, and has been used for describing
thousands of different document types in many fields of human activity, from
transcriptions of ancient Irish manuscripts39 to the technical documentation for
stealth bombers40, and from patients’ medical and clinical records41 to musical

32http://www.w3.org/MarkUp
33ftp://ftp.rfc-editor.org/in-notes/rfc1866.txt
34http://public.web.cern.ch/Public/Content/Chapters/AboutCERN/Achievements/WorldWideWeb/

WWW-en.html
35Flynn Making more use of markup.
36http://www.w3.org/TR/html5/
37http://www.ibm.com/developerworks/library/x-html5/?ca=dgr-lnxw01NewHTML
38http://blog.whatwg.org/faq/
39http://celt.ucc.ie/
40http://web.deskbook.osd.mil/
41http://www.hl7.org

3

notation42. SGML is very large and complex, however, and probably overkill for
most common office desktop applications.

XML is an abbreviated version of SGML, to make it easier to use over the Web, easier
for you to define your own document types, and easier for programmers to write
programs to handle them. It omits all the complex and less-used options of SGML in
return for the benefits of being easier to write applications for, easier to understand,
and more suited to delivery and interoperability over the Web. But it is still SGML,
and XML files may still be processed in the same way as any other SGML file (see the
question on XML software [p.52]).

HTML [p.2] is just one of many SGML or XML applications¯the one most frequently
used on the Web.

Technical readers may find it more useful to think of XML as being SGML−− rather
than HTML++.

(Ed: In respect of this last paragraph, see What is the difference between XML and C or
C++ or Java? [p.9] and How do I execute or run an XML file? [p.18].)

A.7 Who is responsible for XML?
The W3C

XML is a Recommendation of the World Wide Web Consortium (W3C)43, and the
development of the specification is supervised by an XML Working Group. A Special
Interest Group of co-opted contributors and experts from various fields contributed
comments and reviews by email.

XML is a public format: it is not a proprietary development of any company,
although the membership of the WG and the SIG represented companies as well as
research and academic institutions. The v1.0 specification [p.44] was accepted by the
W3C as a Recommendation on Feb 10, 1998.

A.8 Why is XML such an important development?
It overcomes the
inflexibility of
HTML and the
complexity of
SGML

It removes two constraints which were holding back Web developments:

1. dependence on a single, inflexible document type (HTML [p.3]) which was being
much abused for tasks it was never designed for;

2. the complexity of full SGML [p.2], whose syntax allows many powerful but
hard-to-program options.

XML allows the flexible development of user-defined document types. It provides a
robust, non-proprietary, persistent, and verifiable file format for the storage and
transmission of text and data both on and off the Web; and it removes the more
complex options of SGML, making it easier to program for.

4

A.9 Why not just carry on extending HTML?
HTML is already
too overburdened
with proprietary
add-ons.

HTML [p.3] was already overburdened with dozens of interesting but incompatible
inventions from different manufacturers, because it provides only one way of
describing your information.

XML allows groups of people or organizations to create their own customized
markup applications [p.29] for exchanging information in their domain (music,
chemistry, electronics, hill-walking, finance, surfing, petroleum geology, linguistics,
cooking, knitting, stellar cartography, history, engineering, rabbit-keeping,
mathematics [p.34], genealogy44, etc).

HTML as originally conceived is now well beyond the limit of its usefulness as a way
of describing information, and while HTML5 [p.3] will continue to play an important
role for the content it represents, many new applications require a more robust and
flexible infrastructure.

A.10 Why should I use XML?
It’s a robust,
durable,
manipulable, and
free format for
information
identification,
storage and
transfer.

Here are a few reasons for using XML (in no particular order). Not all of these will
apply to your own requirements, and you may have additional reasons not
mentioned here (if so, please let the editor of the FAQ know!).

</> XML can be used to describe and identify information accurately and
unambiguously, in a way that computers can be programmed to ‘understand’
your information (well, at least manipulate as if they could understand it).

</> XML allows documents which are all the same type to be created and handled
consistently and without structural errors, because it provides a standardised
way of describing, controlling, or allowing/disallowing particular types of
document structure. [Note that this has absolutely nothing whatever to do
with formatting, appearance, or the actual text or data content of your
documents, only the structure of them. If you want styling or formatting, see
How do I control formatting and appearance? [p.14].]

</> XML provides a robust and durable format for information storage and
transmission. Robust because it is based on a proven standard, and can thus be
tested and verified; durable (persistent) because it uses plain-text file formats
which will outlast proprietary binary ones.

</> XML provides a common syntax for messaging systems for the exchange of
information between applications. Previously, each messaging system had its
own format and all were different, which made inter-system messaging
unnecessarily messy, complex, and expensive. If everyone uses the same syntax
it makes writing these systems much faster and more reliable.

</> XML is free. Not just free of charge (free as in beer) but free of legal
encumbrances (free as in speech). It doesn’t belong to anyone, so it can’t be
hijacked or pirated. And you don’t have to pay a fee to use it (you can of course

42http://www.tecno.com/smdl.htm
43http://www.w3.org/
44http://users.iclway.co.uk/mhkay/gedml/index.html

5

choose to use commercial software to deal with it, for lots of good reasons, but
you don’t pay for XML itself).

</> XML information can be manipulated programmatically (under machine
control), so XML documents can be pieced together from disparate sources, or
taken apart and re-used in different ways. They can be converted into any
other format with no loss of information.

</> XML lets you separate form (appearance) from content. Your XML file contains
your document information (text, data) and identifies its structure: your
formatting and other processing needs are identified separately in a stylesheet
[p.14] or processing system. The two are combined at output time to apply the
required formatting to the text or data identified by its structure (location,
position, rank, order, or whatever).

</> Any of the Design Goals listed in the XML Specification45.

Peter Flynn writes:

Why not just use Word or Notes?

Restricted proprietary data formats are unsuitable for durable public information.
Information on a network which connects many different types of computer has to be

usable on all of them. Public information in particular cannot afford to be restricted to one
make or model or manufacturer, or to cede control of its data format to private hands. It
is also helpful for such information to be in a form that can be reused in many different
ways, as this will minimize wasted time and effort. Proprietary data formats46, no matter
how well documented or publicized, are simply not an option: their control still resides in
private hands and they can be changed or withdrawn arbitrarily without notice.

SGML [p.2] is the international standard for defining this kind of application, and was
therefore the natural choice for XML, but those who need an alternative based on
different software for other purposes are entirely free to implement similar services using
such a system, especially if they are for private use.

A.11 Where do I find more information about XML?
At
http://xml.coverpages.org/

Online, there’s the XML Specification [p.44] and the ancillary documentation
available from the W3C47; Robin Cover’s SGML/XML Web pages48 with an extensive
list of online reference material and links to software; and a summary49 and
condensed FAQ50 from Tim Bray; and thousands of reference resources available by
typing ‘xml’ into Google or other search engine.

For offline resources, see the lists of books, articles, and software for XML in Robin
Cover’s SGML and XML Web pages51. That site should always be your first port of
call.

45http://www.w3.org/TR/2004/REC-xml-20040204/#sec-origin-goals
46http://publish.ucc.ie/doc/markup?sectoc=1
47http://www.w3.org/
48http://xml.coverpages.org/
49http://www.textuality.com/xml/
50http://www.textuality.com/xml/faq.html
51http://xml.coverpages.org/sgml-xml.html

6

The events listed below are the ones I have been told about. Please mail me52 if you
come across others: there are many other XML events around the world, and most of
them are announced on the mailing lists and newsgroups [p.7].

Events

</> The Balisage53 conference (the principal technical meeting) will be in Montréal on
1st˘5th August 2011.

</> The 2011 annual XML Summer School54, organised by Eleven Informatics55, will
be held in St Edmund Hall, Oxford on 18th˘23rd September 2011.

</> The XML-in-Practice 2011 Conference & Exposition56 (run by IDEAlliance,
formerly the GCA) is themed ‘’ and will be in in October.

</> XML Prague57 will be held on March 26th & 27th, 2011 at Charles University.

A.12 Where can I discuss implementation and development of XML?
On mailing lists,
Usenet
newsgroups,
web-based
bulletin-boards,
and IRC channels

Two of the principal online support media are Usenet newsgroups and mailing lists.
The IRC network is also used to some extent, and most individual projects and
programs have their own topic-specific bulletin-boards on their web sites. There is
also an unknown number of question-and-answer forum sites which are findable
using search engines.

For off-line support, see Where do I find more information about XML? [p.6] for details
of conferences and summerschools.

</> The main Usenet newsgroup is comp.text.xml58, although it is less used than
formerly. Ask your Internet Provider for access to Usenet, or use a Web
interface like the searchable archive59 maintained by Google. If your browser or
mailer doesn’t provide newsreading facilities, install one that does, or (better)
use a standalone newsreader.The comp.text.sgml60 is for all practical purposes
no longer used. The Microsoft-specific newsgroups are being phased out in
favour of web-based forums hosted by Microsoft themselves.

</> The general-purpose mailing list for public discussion is XML-L61: to subscribe,
visit the Web site62 and click on the link to join.

</> For those developing software components for XML there is the xml-dev
mailing list63. You can subscribe by sending a 1˘line mail message to
xml-dev-request@lists.xml.org saying just SUBSCRIBE. Note that this list is for

52xmlfaq@silmaril.ie
57http://balisage.net/
57http://www.xmlsummerschool.com/
57http://elevenllp.co.uk/
57http://www.idealliance.org/conferences_and_events/find?industry=xml
57http://www.xmlprague.cz/2011/index.html
58news:comp.text.xml
59http://groups.google.com/group/comp.text.xml/topics
60news:comp.text.sgml
61http://listserv.heanet.ie/xml-l.html
62https://listserv.heanet.ie/cgi-bin/wa?SUBED1=xml-l\amp{}A=1
63http://lists.xml.org/archives/xml-dev/

7

those people actively involved in developing resources for XML. It is not for
general information about XML (use the XML-L list above for that).

</> The XSL-List is for for discussing XSL (both XSLT and XSL:FO). For details of
how to subscribe, see http://www.mulberrytech.com/xsl/xsl-list.

</> There is a long list of other discussion groups, mailing lists, and forums on
Robin Cover’s site at http://xml.coverpages.org/lists.html.

Andrew Watt writes:

There is a mailing list specifically for XSL-FO only, on eGroups.com64. You can subscribe
by sending a message to XSL-FO-subscribe@egroups.com.

Warning

Be aware that the Yahoo E-Groups XSL-FO list sends out regular automated spam to
non-members falsely claiming that they have asked to join.

Gianni Rubagotti writes:

A new Italian mailing list about XML is born: to subscribe, send a mail message without a
subject line but with text saying subscribe XML-IT to
majordomo@ananas.usr.dsi.unimi.it. Everyone, Italian or not, who wants to debate
about XML in our tongue is welcome.

Gianni also runs the Humanities XML List65.

J-P Theberge writes:

A French mailing list about XML has been created. To subscribe, send subscribe to
xml-request@trisome.com.

Murata Makoto writes:

Please mention this mailing list to your colleagues who use RELAX NG. Go to:
http://groups.yahoo.com/group/rng-users/.

Mailing lists

When you join a mailing list you will be sent details of how to use it. Please Read The Fine
Documentation because it contains important information, particularly about what to do
if your company or ISP changes your email address.

Please note that there is a lot of inaccurate and misleading information published in
print and on the Web about subscribing to and unsubscribing from mailing lists. Don’t
guess: Read The Fine Documentation.

8

A.13 What is the difference between XML and C or C++ or Java?
C and Java are for
writing programs;
XML is for storing
text.

C and C++ (and other languages like FORTRAN, or Pascal, or Visual Basic, or Java or
hundreds more) are programming languages with which you specify calculations,
actions, and decisions to be carried out in order:'

&

$

%

mod curconfig[if left(date,6) = "01-Apr",
t.put "April Fool!",
f.put days(’31102011’,’DDMMYYYY’) -

days(sdate,’DDMMYYYY’)
" more shopping days to Samhain"];

XML is a markup specification language with which you can design ways of
describing information (text or data), usually for storage, transmission, or
processing by a program. It says nothing about what you should do with the data
(although your choice of element names may hint at what they are for):'

&

$

%

<part num="DA42" models="LS AR DF HG KJ" update="2001-11-22">
<name>Camshaft end bearing retention circlip</name>
<image drawing="RR98-dh37" type="SVG" x="476" y="226"/>
<maker id="RQ778">Ringtown Fasteners Ltd</maker>
<notes>An <tool id="GH25"/>angle-nosed insertion tool</tool> is
required for the removal and replacement of this part.</notes>

</part>

On its own, an SGML or XML file (including HTML) doesn’t do anything. It’s a data
format which just sits there until you run a program which does something with it.
See also the question about how to run or execute XML files [p.18].

William Hammond writes:

(in article <i7ll1362ib.fsf@hilbert.math.albany.edu>)
SGML is a category of document types, with a configurable shared syntax, most of

which (like classic HTML) cannot be compiled to produce executable programs. XML is a
subcategory of SGML with syntactic restrictions. For example, with XML the vocabulary
of a document type is always case sensitive, while with SGML it may be either case
sensitive or case insensitive. So, for example, classic HTML is an SGML document type,
and XHTML+MathML is an XML document type.

While some document types correspond to document markup languages, other
document types (like a CTAN catalog entry) are just for structured data[...]

I doubt seriously, however, that a computer language like C is in any reasonable sense
equivalent to an SGML document type.

A.14 Does XML replace HTML?
No.

No. XML itself does not replace HTML. Instead, it provides an alternative which
allows you to define your own set of markup elements. HTML is expected to remain

64http://www.egroups.com/group/XSL-FO
65http://groups.yahoo.com/group/x-humanities/

9

in common use on the web, and the current version of HTML (XHTML [p.10]) is in
XML syntax, although HTML5 may depart from this.

XML is designed to make the writing of processing software much easier than with
SGML, which is what the original HTML was based on.

A.15 Is there an XML version of HTML?
Yes, XHTML
from W3C

Yes, the W3C Recommendation is XHTML66 which is ‘a reformulation of HTML 4 in
XML 1.0’. This specification defines HTML as an XML application, and provides three
DTDs corresponding to the ones defined by HTML 4.* (Strict, Transitional, and
Frameset).

The semantics of the elements and their attributes are as defined in the W3C
Recommendation for HTML 4. These semantics were intended to provide the
foundation for future extensibility of XHTML. Compatibility with existing HTML
browsers is possible by following a small set of guidelines (see the W3C site).

66http://www.w3.org/TR/xhtml1/

10

B Existing users (including everyone who uses a browser)

B.1 What do I have to do to use XML?
To read it: an
XML browser (eg
Firefox or IE). To
create: an XML
editor (Emacs,
Spy, etc).

For the average user of the Web, nothing except use a browser which works with
XML (see the question about browsers [p.16]). Remember some XML components are
still being invented or implemented (see the W3C67 web site), so some features are
still either undefined or have yet to be written.

You can use XML-conformant browsers to look at some of the stable XML material,
such as Jon Bosak’s Shakespeare plays68 and the molecular experiments of the
Chemical Markup Language (CML)69. There are some more example sources listed at
http://xml.coverpages.org/xml.html#examples, and you will find XML (particularly
in the guise of XHTML [p.10]) being introduced in places where it won’t break older
browsers.

If you want to start preparations for creating your own XML files, see the questions
in the Authors’ Section [p.21] and the Developers’ Section [p.44].

B.2 What does an XML document actually look like (inside)?
Pointy brackets
like HTML

The basic structure of XML is similar to other applications of SGML, including HTML.
The basic components can be seen in the following examples. An XML document
starts with an optional Prolog, which can have two (optional) parts:

1. The XML Declaration�
�

�
�

<?xml version="1.0" encoding="utf-8"?>

which specifies that this is an XML document and that it uses the UTF-8
character repertoire (the default);

2. A Document Type Declaration�
�

�
�

<!DOCTYPE report SYSTEM "http://sales.acme.corp/dtds/salesrep.dtd">

which identifies the type of document (here, report) and says where the
Document Type Description (DTD) is stored;

The Prolog is followed by the Document Instance:

1. A root element, which is the outermost (top level) element (start-tag plus
end-tag) which encloses everything else: in the examples below the root
elements are conversation and titlepage;

67http://www.w3.org/
68ftp://sunsite.unc.edu/pub/sun-info/standards/xml/eg/
69http://www.xml-cml.org

11

2. A structured mix of descriptive or prescriptive elements enclosing the character
data content (text), and optionally any attributes (‘name="value"’ pairs) inside
some start-tags.

XML documents can be very simple, with straightforward nested markup of your
own design:'

&

$

%

<?xml version="1.0" standalone="yes"?>
<conversation>

<greeting>Hello, world!</greeting>
<response>Stop the planet, I want to get
off!</response>

</conversation>

Or they can be more complicated, with a Schema [p.31] or DTD [p.28], and maybe an
internal subset (local DTD changes in [square brackets]); and an arbitrarily complex
nested structure:'

&

$

%

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE titlepage

SYSTEM "http://www.foo.bar/dtds/typo.dtd"
[<!ENTITY % active.links "INCLUDE">]>
<titlepage id="BG12273624">

<white-space type="vertical" amount="36"/>
<title font="Baskerville" alignment="centered"
size="24/30">Hello, world!</title>

<white-space type="vertical" amount="12"/>
<!-- In some copies the following
decoration is hand-colored, presumably
by the author -->

<image location="http://www.foo.bar/fleuron.eps"
type="URI" alignment="centered"/>

<white-space type="vertical" amount="24"/>
<author font="Baskerville" size="18/22"
style="italic">Vitam capias</author>

<white-space type="vertical" role="filler"/>
</titlepage>

Or they can be anywhere between: a lot will depend on how you want to define your
document type (or whose you use) and what it will be used for. Database-generated
or program-generated XML documents used in e-commerce are usually unformatted
because they are for machine consumption, not for human reading, and they may
use very long names or values, with multiple redundancy and sometimes no
character data content at all, just values in attributes:

12

'

&

$

%

<?xml version="1.0"?>
<ORDER-UPDATE AUTHMD5="4baf7d7cff5faa3ce67acf66ccda8248"
ORDER-UPDATE-ISSUE="193E22C2-EAF3-11D9-9736-CAFC705A30B3"
ORDER-UPDATE-DATE="2005-07-01T15:34:22.46"
ORDER-UPDATE-DESTINATION="6B197E02-EAF3-11D9-85D5-997710D9978F"
ORDER-UPDATE-ORDERNO="8316ADEA-EAF3-11D9-9955-D289ECBC99F3">
<ORDER-UPDATE-DELTA-MODIFICATION-DETAIL ORDER-UPDATE-ID="BAC352437484">
<ORDER-UPDATE-DELTA-MODIFICATION-VALUE ORDER-UPDATE-ITEM="56"
ORDER-UPDATE-QUANTITY="2000"/>

</ORDER-UPDATE-DELTA-MODIFICATION-DETAIL>
</ORDER-UPDATE>

B.3 Should I use XML instead of HTML?
Yes if you need
robustness,
accuracy, and
persistence.

Yes, if you need robustness, accuracy, and persistence. XML allows authors and
providers to design their own document markup [p.29] instead of being limited by
HTML. Document types can be explicitly tailored to an application, so the
cumbersome fudging and poodlefaking that has to take place with HTML [p.3]
becomes a thing of the past: your markup can always say what it means. Trivial
example:�
�

�
�

<date YYYY-MM-DD="2005-12-26">next Monday</date>

</> Information content can be richer and easier to use, because the descriptive and
hypertext linking abilities of XML [p.33] are much greater than those available
in HTML.

</> XML can provide more and better facilities for browser presentation and
performance, using XSLT and CSS stylesheets;

</> It removes many of the underlying complexities of SGML-format HTML (which
led to them being ignored and broken) in favor of a more flexible model, so
writing programs to handle XML is much easier than doing the same for all the
old broken HTML.

</> Information becomes more accessible and reusable, because the more flexible
markup of XML can be used by any XML software instead of being restricted to
specific manufacturers as has become the case with HTML.

</> XML files can be used outside the Web as well, in existing document-handling
environments (eg publishing).

If your information is transient, or completely static and unreferenced, or very short
and simple, and unlikely to need updating, HTML may be all you need.

B.4 Someone sent me an XML file. How do I read it?
Open it in an
XML browser or
XML editor.If the file is well-formed or valid XML, you can just open it with any

XML-conformant browser (see Where can I get an XML browser? [p.16]). This will

13

display the file in an unformatted view, showing all the markup in a format that lets
you fold up or unfold the nested hierarchy (click on the little plus and minus
symbols), which will at least let you read something.

If the file contains a link to an XSLT or CSS stylesheet (and the stylesheet was
provided or is web-accessible) then the browser should format the file in a readable
manner (but beware that in-browser formatting is not robust).

If you want to edit the file, you need an XML editor (see Editors [D.10, p.53]). Unless
you are very skilled with pointy-bracket markup, do not try to edit XML files with
non-XML editors.

B.5 How do I control formatting and appearance?
Use a CSS or
XSLT stylesheet.

In HTML, default styling was built into the browsers because the tagset of HTML was
predefined and hardwired into browsers. In XML, where you can define your own
tagset, browsers cannot possibly be expected to guess or know in advance what
names you are going to use and what they will mean, so you need a stylesheet if you
want to display formatted text.

Browsers which read XML [p.16] will accept and use a CSS stylesheet at a minimum,
but you can also use the more powerful XSLT stylesheet language to transform your
XML into HTML¯which browsers, of course, already know how to display (and that
HTML can still use a CSS stylesheet). This way you get all the document
management benefits of using XML, but you don’t have to worry about your readers
needing XML smarts in their browsers.

Mike Brown writes:

XSLT is an XML document processing language that uses source code that happens to be
written in XML. An XSLT document declares a set of rules for an XSLT processor to use
when interpreting the contents of an XML document. These rules tell the XSLT
processor how to generate a new XML-like data structure and how that data should be
emitted¯as an XML document, as an HTML document, as plain text, or perhaps in some
other format.

This transformation can be done either inside the browser, or by the server before the
file is sent. Transformation in the browser offloads the processing from the server, but
may introduce browser dependencies, leading to some of your readers being excluded.
Transformation in the server makes the process browser-independent, but places a
heavier processing load on the server.

As with any system where files can be viewed at random by arbitrary users, the
author cannot know what resources (such as fonts) are on the user’s system, so the
same care is needed as with HTML using fonts. To invoke a stylesheet from an XML
file for standalone processing in the browser, include one of the stylesheet
declarations:�

�

�

�
<?xml-stylesheet href="foo.xsl" type="text/xsl"?>
<?xml-stylesheet href="foo.css" type="text/css"?>

14

(substituting the URI of your stylesheet, of course). See
http://www.w3.org/TR/xml-stylesheet/ for the full details. The Cascading Stylesheet
Specification (CSS)70 provides a simple syntax for assigning styles to elements, and
has been implemented in most browsers.

Dave Pawson maintains a comprehensive XSL FAQ at
http://www.dpawson.co.uk/xsl/, and his book XSL-FO: Making XML Look Good in
Print71 [the Fox book] is available from O’Reilly. XSL uses XML syntax (an XSL
stylesheet is just an XML file) and has widespread support from several major
browser vendors (see the questions on browsers [p.16] and other software [p.52]).
XSL comes in two flavours:

</> XSL itself, which is a pure formatting language, outputting a Formatted Objects
(FO) file, which needs a text formatter like FOP72, XEP73, or others to create
printable (PDF) output (but see Alternatives to XSL:FO [p.16]). Currently I am
not aware of any Web browsers which support direct XSL rendering to PDF;

</> XSLT (T for Transformation), which is a language to specify transformations of
XML into HTML either inside the browser or at the server before transmission.
It can also specify transformations from one vocabulary of XML to another,
and from XML to plaintext (which can be any format, including RTF and).

Currently only Microsoft Internet Explorer 5.5 and above, and Firefox74 0.9.6 and
above handle XSLT inside the browser (MSIE5.5 needs some post-installation
surgery75 to remove the obsolete WD-xsl and replace it with the current
XSL-Transform processor; MSIE6 and Firefox work as installed).

WYSIWYG for XSL

There have been attempts to produce pseudo-WYSIWYG editors for creating XSL[T]
stylesheets, but they have mostly been restricted to simple mapping between input
elements and output elements (eg a DocBook para to a HTML p). Anything beyond this
seems likely to fail because of the infinite complexity of what people want to do with their
information. If you have access to the ACM database, see the paper by Pietriga,
Vion-Dury, and Quint on VXT76, from the ACM DocEng’01 (Atlanta) Proceedings.

Generating HTML on the server

There is a growing use of server-side processors like Cocoon77, AxKit78, PropelX79, and
others, which let you create, store, and manage your information in XML but serve it
auto-converted to HTML or some other format, thus allowing the output to be used by
any browser. XSLT is also widely used to transform XML into non-SGML formats for
input to other systems (for example to transform XML into for typesetting).

70http://www.w3.org/Style/css
71Pawson.
72http://xml.apache.org/
73http://www.renderx.com/
74http://www.mozilla.org/
75http://www.netcrucible.com/xslt/msxml-faq.htm
76http://portal.acm.org/citation.cfm?id=502189
79http://cocoonapache.org/
79http://axkit.org/
79http://www.propylon.com/products/propelx/

15

Alternatives to XSL:FO

Instead of generating PDF via an FO processor, it is possible to use XSLT to transform
XML to for typesetting PDF (as is done for the print versions of this FAQ, from DocBook
to). This has the advantage of being able to make use of ’s extensive library of prewritten
formatting modules (‘packages’), which avoids much of the wheel-reinventing currently
required with XSL:FO.

Alternatively, David Carlisle’s xmltex reads XML directly, offering another practical if
experimental solution to typesetting XML. One use of a system that can typeset XML
files is as a backend processor for XSL:FO, serialized as XML. Sebastian Rahtz’s Passive
uses xmltex to achieve this end.

The FAQ is at http://www.tex.ac.uk/faq.

SGML systems used a similar stylesheet mechanism: some of the common ones were
the FOSI (Formatted Output Specification Instance), which was standard in defence
and industrial engineering applications, especially when using the Arbortext editor
(Adept, now Epic); the DynaText/DynaWeb stylesheet used in SGML publishing to the
web; and the Synex stylesheet used in browsers based on the Synex engine (eg
Panorama, whose styling interface was partly adopted in XMetaL), the expertise of
whose designers persists in the DocZilla browser.

B.6 Where can I get an XML browser?
MSIE 7; Firefox 3

Current state of existing browser support for XML (1 January 2011):

</> Current versions of Microsoft Internet Explorer, Firefox, Safari, Chrome, and
Opera all appear to support XML with CSS and/or XSLT stylesheets. The editor
would welcome additional information and corrections.

</> Don’t use Netscape (any version), Internet Explorer 6 or earlier, or any early
versions of Mozilla if you want XML support: they either don’t have it or were
hopelessly broken. Upgrade to the current version of Firefox80 as soon as
possible.

</> The remainder of this list is of historical interest only.

</> Microsoft Internet Explorer 5.0 and 5.5 handled XML, processing it by default
using a built-in stylesheet written in a Microsoft-specific, obsolete predecessor
of XSLT called XSL (not to be confused with the real XSLT). The output of the
stylesheet is DHTML, which, when rendered in the browser, shows a coloured,
syntax-highlighted version of the XML document, with collapsible views. If the
XML document references a stylesheet, that stylesheet will be used instead,
within the limitations of MSIE’s incomplete implementation of CSS. MSIE 5.0
and 5.5 can also use stylesheets in another obsolete syntax called WD-xsl,
which should be avoided. These versions can be upgraded to support real XSLT:
see the MSXML FAQ81.MSIE 6.0 and later use real XSLT 1.0, but can use both
the obsolete syntaxes as well.

</> Mozilla Firefox82 0.9 up, Netscape 6 and 7 (there is no Netscape 5), and Galeon

80http://www.mozilla.org/
81http://www.netcrucible.com/xslt/msxml-faq.htm
82http://www.mozilla.org/

16

all have full XML support with XSLT and CSS. In general, Firefox is more robust
than MSIE, and provides better standards adherence.I have a user report that
Netscape 4.6 and 4.8 supports XML, but no independent verification.

</> The authors of the former MultiDoc Pro SGML browser, CITEC83 (whose engine
was also used in Panorama and other browsers), joined forces with Mozilla to
produce a multi-everything browser called DocZilla, which reads HTML, XML,
and SGML, with XSLT and CSS stylesheets. This runs under Windows and
Linux and is currently at release 1.0. See http://www.doczilla.com for details.
This is by far the most ambitious browser project, and is backed by very solid
markup-handling expertise.

</> Contrary to earlier reports, Opera84 does not appear to support XML. The
browser size is tiny by comparison with the others, but HTML/CSS features are
good and the speed is excellent, although the earlier slavish insistence on
mimicking everything old (pre-Mozilla) Netscape did, especially the bugs, still
shows through in places.

I have less information on the XML capabilities of the new (OS/X) Mac browser
(Safari), which is based on the KHTML engine used in Konqueror. Konqueror itself
does not appear to support XML or XSLT (at least in KDE under Fedora Core 4, for
example), but Safari 1.3.2 (v312.6) under OS 10.3 does provide partial support for
XML, but does not honour an external DTD modified by an internal subset (thanks to
John Haynie for testing this).

83http://www.citec.fi/
84http://www.opera.com/opera5/specs.html
85http://www.microsoft.com

17

Mike Brown writes:

The concept of ‘browsing’ is primarily the result of HTML having the semantics that it
does. In an HTML document there are sections of text called anchors that are
‘hyperlinked’ to other documents that might be at remote locations on a network or
filesystem. HTML documents provide cues to a web browser regarding how the
document should be displayed and what kind of behaviors are expected of the browser
when the user interacts with it. The HTML specification provides many suggestions and
requirements for the browser, and provides specific meanings for many different
examples of markup, such as the fact that an element refers to an image that
should be retrieved by the browser and rendered inline with the adjacent text.

Unlike HTML, XML does not have such inherent semantics at all. There is no
prescribed method for rendering XML documents. Therefore, what it means to ‘browse’
XML is open to interpretation. For example, an XML document describing the
characteristics of a machine part does not carry any information about how that
information should be presented to a user. An application is free to use the data to
produce an image of the part, generate a formatted text listing of the information, display
the XML document’s markup with a pretty color scheme, or restructure the data into a
format for storage in a database, transmission over a network, or input to another
program.

However, despite the fact that XML documents are purely descriptive data files, it is
possible to ‘browse’ them in a sense, by rendering them with stylesheets. A stylesheet is
a separate document that provides hints and algorithms for rendering or transforming the
data in the XML document. HTML users may be familiar with Cascading Style Sheets
(CSS). The CSS stylesheet language is general and powerful enough to be applied to XML
documents, although it is oriented toward visual rendering of the document and does not
allow for complex processing of the document’s data. By associating an XML document
with a CSS stylesheet, it may be possible to load an XML document in a CSS-aware web
browser, and the browser may be able to provide some kind of rendering of it, even if the
browser does not otherwise know how to read and process XML documents. However,
not all web browsers will load an XML document correctly, and they are not required to
recognize the XML markup that associates the document with a stylesheet, so one
cannot assume that XML documents can be opened with just any web browser.

A more complex and powerful stylesheet language [p.14] is XSLT, the Transformations
part of the Extensible Stylesheet Language, which can be used to transform XML to other
formats, including HTML, other forms of XML, and plain text. If the output of this
transformation is HTML, it can be viewed in a web browser as any other HTML
document would.

The degree of support for XML and stylesheets in web browsers varies greatly.
Although loading and rendering XML in the browser is possible in some cases, it is not
universally supported. Therefore, much XML content on the web is translated to HTML
on the servers. It is this generated HTML that is delivered to the browsers. Most of
Microsoft85’s web site, for example, exists as XML that is converted to HTML on the fly.
The web browser never knows the difference.

See also the notes on software for authors [p.52] and XML for developers [p.44], and
the more detailed list on the XML pages in the SGML Web site at
http://xml.coverpages.org/.

B.7 How do I execute or run an XML file?
Not a meaningful
question. XML is
a data format, not
a programming
language.

You can’t and you don’t. XML itself is not a programming language, so normal XML
documents don’t ‘run’ or ‘execute’. XML is a markup specification language and XML

18

files are just data: they sit there until you run a program which displays them (like a
browser) or does some work with them (like a converter which writes the data in
another format, or a database which reads the data), or modifies them (like an
editor).

If you want to view or display an XML file, open it with an XML editor [D.10, p.53]
or an XML browser [p.16].

The water is muddied by XSL (both XSLT and XSL:FO) which use XML syntax to
implement a declarative programming language. In these special cases you
can ‘execute’ an XML file, by running a processing application like Saxon, which
compiles the directives specified in XSLT files into Java bytecode to process XML.

B.8 Do I have to switch from SGML or HTML to XML?
Not if you don’t
want to

No, existing SGML and HTML applications software will continue to work with
existing files. But as with any enhanced facility, if you want to view or download
and use XML files, you will need to use XML-aware software. There is much more
being developed for XML than there ever was for SGML, so a lot of users are moving.

However, for some static SGML applications (eg large document archives) with
well-established and stable software, a good case can be made for ‘not fixing it if it
ain’t bust’, and deferring a move to XML until an appropriate time comes for a
revision of the service or features.

B.9 Can I use XML for ordinary office applications?
Yes, use Star
Office, Open
Office,
WordPerfect, or
even MS-Office
(11/XP only).

Yes, most office productivity suites already do this, and there are more on the way:

</> OpenOffice86 has been saving its files as XML by default for a several years
(.odt, .ods, and .odp file types). The package comprise a wordprocessor,
spreadsheet, presentation software, and a vector drawing package, and they
share related Schemas. The Office Document Format (ODF) is now the official
International Standard (ISO/IEC 26300) for office documents.

</> Corel’s WordPerfect87 suite has shipped with a fully-fledged XML editor for
many years (which also does full SGML as well). It can save the formatted
output as a Microsoft Word .doc file, but it uses its own stylesheet technology
to format documents, not XSLT or CSS. It can also save its own (WordPerfect)
document format to an XML representation.

</> The AbiWord88 wordprocessor (all platforms) can open Word and OpenOffice
documents and save them in DocBook XML format, although it does not
provide native XML editing.

</> Microsoft Office 2003 provided a ‘Save As. . . XML’ to all parts of the suite except
Powerpoint, using WordML to represent the visual appearance of the document,

86http://www.openoffice.org/
87http://www.corel.com/servlet/Satellite?pagename=Corel2/Products/Home\amp{}pid=

1047022958453
88http://www.abisource.com/

19

although it will preserve style names if they are in use.Word 2007 saves
natively as XML document instances (.docx, .xlsx, and .pptx file types), using
Office Open XML (similar to WordML) which is Microsoft’s equivalent to ODF
[p.19], which they managed to have recognised as a parallel international
standard.Word contains a real XML editor as well, supporting other W3C
Schemas as well as its own (but not DTDs), and this also provides a method for
binding element types to Word’s named styles (like Microsoft’s earlier product
SGML Author for Word89 did).

</> Avoid Microsoft’s ‘Works’ package, as it is incompatible both with Office and
with XML.

</> I have no information on Lotus office products.

There is more detail under ‘XML File Formats for Office Documents90’ in the XML
Cover Pages which briefly describes and points to further information on: GNOME
Office, KOffice, Microsoft XDocs, OASIS TC for Open Office XML File Format,
1DOK.org Project, and OpenOffice.org XML File Format.

89http://xml.coverpages.org/micrfac1.html#msauth
90http://xml.coverpages.org/xmlFileFormats.html

20

C Authors (including writers of HTML and Web page owners)

C.1 Do I have to know HTML or SGML before I learn XML?
No, but it’s useful.

No, although it’s useful because a lot of XML terminology and practice derives from
two decades’ experience of SGML.

Be aware that ‘knowing HTML’ is not the same as ‘understanding SGML’. Although
HTML was written as an SGML application, browsers ignore most of it (which is
why so many useful things don’t work), so just because something is done a certain
way in HTML browsers does not mean it’s correct, least of all in XML.

C.2 How does XML handle white-space in my documents?
Parsers keep it all.
It’s up to the
application to
decide what to do
with it.

All white-space, including linebreaks (Mac CR, Win CR/LF, Unix LF), TAB characters,
and normal spaces, even between ‘structural’ elements where no text can ever appear, is
passed by the parser unchanged to the application (browser, formatter, viewer,
converter, etc), identifying the context in which the white-space was found (element
content, data content, or mixed content, if this information is available to the parser,
eg from a DTD or Schema). This means it is the application’s responsibility to decide
what to do with such space, not the parser’s:

</> insignificant white-space between structural elements (space which occurs
where only element content is allowed, ie between other elements, where text
data never occurs) will get passed to the application (in SGML this white-space
gets suppressed, which is why you can put all that extra space in HTML
documents and not worry about it);

</> significant white-space (space which occurs within elements which can contain
text and markup mixed together, usually mixed content or PCDATA) will still
get passed to the application exactly as under SGML. It is the application’s
responsibility to handle it correctly.

The parser must inform the application that white-space has occurred in element
content, if it can detect it. (Users of SGML will recognize that this information is not
in the ESIS91, but it is in the Grove92.)'

&

$

%

<chapter>
<title>
My title for
Chapter 1.

</title>
<para>

text
</para>

</chapter>

91http://xml.coverpages.org/WG8-n931a.html
92http://xml.coverpages.org/topics.html#groves

21

In the example above, the application will receive all the pretty-printing linebreaks,
TABs, and spaces between the elements as well as those embedded in the chapter title.
It is the function of the application, not the parser, to decide which type of
white-space to discard and which to retain. Many XML applications have
configurable options to allow programmers or users to control how such
white-space is handled.

Why?

In SGML, a DTD is compulsory always. A parser therefore always knows in advance
whether white-space has occurred in element content (and can therefore be discarded)
or in mixed content or PCDATA (where it must be preserved). XML allows processing
without a DTD or Schema, so it may be impossible to tell whether space should be
discarded or not, so the general rule was imposed that all white-space must be reported
to the application.

C.3 Which parts of an XML document are case-sensitive?
All of it, both
markup and text.

All of it, both markup and text. This is significantly different from HTML and most
other SGML applications. It was done to allow markup in non-Latin-alphabet
languages, and to obviate problems with case-folding in writing systems which are
caseless.

</> Element type names are case-sensitive: you must follow whatever combination
of upper- or lower-case you use to define them (either by first usage or in a DTD
or Schema [p.28]). So you can’t say <BODY>. . . </body>: upper- and lower-case
must match; thus , , and are three different element types;

</> For well-formed XML documents with no DTD, the first occurrence of an
element type name defines the casing;

</> Attribute names are also case-sensitive, for example the two width attributes in
<PIC width="7in"/> and <PIC WIDTH="6in"/> (if they occurred in the same file)
are separate attributes, because of the different case of width and WIDTH;

</> Attribute values are also case-sensitive. CDATA values (eg Url="MyFile.SGML")
always have been, but NAME types (ID and IDREF attributes, and token list
attributes) are now case-sensitive as well;

</> All general and parameter entity names (eg Á), and your data content
(text), are case-sensitive as always.

C.4 How can I make my existing HTML files work in XML?
Either make them
XHTML or use a
different
document type.

Either convert them to conform to some new document type (with or without a DTD
or Schema) and write a stylesheet to go with them; or edit them to conform to
XHTML [p.10].

It is necessary to convert existing HTML files because XML does not permit end-tag
minimisation (missing </p>, etc), unquoted attribute values, and a number of other
SGML shortcuts which have been normal in most HTML DTDs. However, many

22

HTML authoring tools already produce almost (but not quite) well-formed XML
[D.3, p.47].

You may be able to convert HTML to XHTML using the Dave Raggett’s HTML Tidy93

program, which can clean up some of the horrible formatting mess left behind by
inadequate HTML editors, and even separate out some of the formatting to a
stylesheet, but there is usually still some hand-editing to do.

Most modern website design programs, including DreamWeaver, still don’t produce
anything like clean HTML, largely because they are for making pages look pretty,
rather than getting the information right. If you get the information right in XML
first, and export it to a page design produced using a website design program, it’s
probably less important that the HTML is a mess. Using a website design program
and its HTML pages as the sole repository of your information can be a dangerous
mistake, though.

Converting valid HTML to XHTML

If your HTML files are valid (full formal validation with an SGML parser, not just a simple
syntax check), then try validating them as XHTML with an XML parser. If you have been
creating clean HTML without embedded formatting then this process should throw up
only mismatches in upper/lowercase element and attribute names, and empty elements
(plus perhaps the odd non-standard element type name if you use them). Simple
hand-editing or a short script should be enough to fix these changes.

If your HTML validly uses end-tag omission, this can be fixed automatically by a
normalization program like sgmlnorm (from OpenSP, which is part of OpenJade94) or by
the sgml-normalize function in an editor like Emacs/psgml (don’t be put off by the names,
they both do XML).

If you have a lot of valid HTML files, you could write a script to do this in a
programming language which understands SGML markup (such as Omnimark95,
SGMLC96, or one of the popular scripting languages (eg Perl, Python, Tcl, etc), using their
SGML/XML libraries; or you could even use editor macros if you know what you’re doing.

Converting to a new document type

If you want to move your files out of HTML into some other DTD entirely, there are
many native XML application DTDs, and standard XML versions of popular DTDs like
TEI and DocBook or DITA to choose from. There is a pilot site run by CommerceNet
(http://www.xmlx.com/) for the exchange of XML DTDs.

Alternatively you could just make up your own markup: so long as it makes sense and
you create a well-formed file, you should be able to write a CSS or XSLT stylesheet and
have your document displayed in a browser.

93http://tidy.sourceforge.net/
96http://sourceforge.net/projects/openjade/
96http://www.omnimark.com
96http://sgml.dircon.co.uk/

23

Converting invalid HTML to well-formed XHTML

If your files are invalid HTML (95% of the Web) they can be converted to well-formed
DTDless files as follows:

1. replace the DOCTYPE Declaration with the XML Declaration
<?xml version="1.0" encoding="iso-8859-1"?> (using the appropriate
character encoding).

2. If there was no DOCTYPE Declaration, just prepend the XML Declaration.

3. Change any EMPTY elements (eg every BASE, ISINDEX, LINK, META, NEXTID and
RANGE in the header, and every AREA, ATOPARA, AUDIOSCOPE, BASEFONT, BR,
CHOOSE, COL, FRAME, HR, IMG, KEYGEN, LEFT, LIMITTEXT, OF, OVER, PARAM, RIGHT,
SPACER, SPOT, TAB, and WBR in the body of the document) so that they end with />
instead, for example ;

4. Make all element names and attribute names lowercase;

5. Ensure there are correctly-matched explicit end-tags for all non-EMPTY elements;
eg every <para> must have a </para>, etc;

6. Escape all < and & non-markup (ie literal text) characters as < and &
respectively (there shouldn’t be any isolated < characters to start with, anyway!);

7. Ensure all attribute values are in matched quotes (values with embedded single
quotes must be in double quotes, and vice versa¯if you need both, use the "
character entity reference);

8. Ensure all script URIs which have & as a field separator are changed to use &
or a semicolon instead.

Be aware that some obsolete HTML browsers may not accept XML-style EMPTY
elements with the trailing slash, so the above changes may not be
backwards-compatible. An alternative is to add a dummy end-tag to all EMPTY
elements, so becomes . This is
valid XML but you must be able to guarantee no-one will ever put any text content
in such elements. Adding a space before the closing slash in EMPTY elements (eg
) may also fool older browsers into accepting XHTML as
HTML.

If you answer Yes to any of the questions in the Checklist for invalid HTML [p.25],
you can save yourself a lot of grief by fixing those problems first before doing
anything else. You will likely then be getting close to having well-formed files.

Markup which is syntactically correct but semantically meaningless or void should
be edited out before conversion. Examples are spacing devices such as repeated empty
paragraphs or linebreaks, empty tables, invisible spacing GIFs etc. XML uses
stylesheets, so you won’t need any of these.

Unfortunately there is rather a lot of work to do if your files are invalid: this is why
many Webmasters now insist that only valid or well-formed files are used (and why
you should instruct your designers to do the same), in order to avoid unnecessary
manual maintenance and conversion costs later.

24

Checklist for invalid HTML

If your HTML files fall into this category (HTML created by most WYSIWYG editors is
usually invalid) then they will almost certainly have to be converted manually, although if
the deformities are regular and carefully constructed, the files may actually be almost
well-formed, and you could write a program or script to do as described above. The
oddities you may need to check for include:

</> Do the files contain markup syntax errors? For example, are there any missing
angle-brackets, backslashes instead of forward slashes on end-tags, or elements
which nest incorrectly (eg
starting <I>inside one element but ending outside</I> it)?

</> Are there any URIs (eg in hrefs or srcs) which use Microsoft Windows-style
backslashes instead of normal forward slashes?

</> Do the files contain markup which conflicts with HTML DTDs, such as headings or
lists inside paragraphs, list items outside list environments, header elements like
base preceding the first html, etc? (another sloppy editor trick)

</> Do the files use imaginary elements which are not in any known HTML DTD?
(large amounts of these are used in proprietary markup systems masquerading as
HTML). Although this is easy to transform to a DTDless well-formed file (because
you don’t have to define elements in advance) most proprietary or
browser-specific extensions have never been formally defined, so it is often
impossible to work out meaningfully where the element types can be used.

</> Are there any invalid (non-XML) characters in your files? Look especially for native
Apple Mac Roman-8 characters left by careless designers; any of the illegal
characters (the 32 characters at decimal codes 128˘159 inclusive) inserted by
MS-Windows editors; and any of the ASCII control characters 0˘31 (except those
permitted like TAB, CR, and LF). These need to be converted to the correct
characters in ISO 8859-1 (a common default in browsers), or the relevant plane of
Unicode (in which case you will probably need to use UTF-8 as your document
encoding).

</> Do your files contain invalid (old Mosaic/Netscape-style) comments? Comments
must look <!-- like this --> with double-dashes each end and no double
(especially not multiple) dashes in between.

C.5 If XML is just a subset of SGML, can I use XML files directly with existing
SGML tools?

Yes, if they are up
to date

Yes, provided you use up-to-date SGML software which knows about the WebSGML
Adaptations TC to ISO 887997 (the features needed to support XML, such as the
variant form for EMPTY elements; some aspects of the SGML Declaration such as
NAMECASE GENERAL NO; multiple attribute token list declarations, etc).

An alternative is to use an SGML DTD to let you create a fully-normalised SGML file,
but one which does not use empty elements; and then remove the DocType
Declaration so it becomes a well-formed DTDless XML file. Most SGML tools now
handle XML files well, and provide an option switch between the two standards. (see
the pointers in What XML software is available? [p.52]).

97http://www.ornl.gov/sgml/sc34/document/0029.htm

25

C.6 I’m used to authoring and serving HTML. Can I learn XML easily?
Yes

Yes, very easily, but at the moment there is still a need for more tutorials, simpler
tools, and more examples of XML documents. ‘Well-formed’ XML documents [D.3,
p.47] may look similar to HTML except for some small but very important points of
syntax.

The big practical difference is that XML has to stick to the rules. HTML browsers let
you serve them even fatally broken or ridiculously corrupt HTML because they don’t
do a formal parse but elide all the broken bits instead. With XML your files have to
be completely correct or they simply won’t work at all. One outstanding problem is
that some browsers claiming XML conformance are also broken, and some browsers’
support for CSS styling is dubious at the best. Try yours on the test files at
http://xml.silmaril.ie/test.xml and http://xml.silmaril.ie/hotels.xml.

C.7 Can XML use non-Latin characters?
Yes, this is the
default

Yes, the XML Specification [p.44] explicitly says XML uses ISO 1064698, the
international standard character repertoire which covers most known languages.
Unicode99 is an identical repertoire, and the two standards track each other. The spec
says (2.2): ‘All XML processors must accept the UTF-8 and UTF-16 encodings of ISO
10646. . . ’. There is a Unicode FAQ at http://www.unicode.org/faq/ and an example
of the range of alphabets and symboks at
http://www.cogsci.ed.ac.uk/~richard/unicode-sample-3-2.html.

Warning

While XML software may allow you to enter any Unicode character into a document, you
can only see the characters if your computer has a suitable font! Not all typefaces and
font files have the entire Unicode repertoire (ones that do are huge).

UTF-8 is an encoding of Unicode into 8-bit characters: the first 128 are the same as
ASCII, and higher-order characters are used to encode anything else from Unicode
into sequences of between 2 and 6 bytes100. UTF-8 in its single-octet form is
therefore the same as ISO 646 IRV (ASCII), so you can continue to use ASCII for
English or other languages using the Latin alphabet without diacritics. Note that
UTF-8 is incompatible with ISO 8859-1 (ISO Latin-1) after code point 127 decimal
(the end of ASCII).

UTF-16 is an encoding of Unicode into 16-bit characters, which lets it represent 16
planes. UTF-16 is incompatible with ASCII because it uses two 8-bit bytes per
character (four bytes above U+FFFF).

98http://www.iso.ch/
99http://www.unicode.org/

100http://www.cl.cam.ac.uk/~mgk25/ucs/examples/UTF-8-test.txt

26

Peter Flynn writes:

The encoding specification can refer to any character set your software supports, but the
XML Specification only requires that applications support UTF-8 and UTF-16. Some of
the common encodings supported by software include:

US-ASCII Characters codes TAB, LF, CR, space, and the printable characters 33 to 126
(decimal) only (all other control characters are forbidden by XML).

ISO-8859-1 (Western European Latin-1) As ASCII plus codes 128 to 255 (decimal).
Covers most (but not all) western European accented letters.

ISO-8859-2 to 15 The other planes of ISO-8859 (2 to 15) cover different sets of
Latin-based alphabetic and other symbols.

‘Codepages’ and other obsolescent sets Some software may also support
various obsolete ‘codepages’, such as IBM-850, Microsoft Windows-1252, Apple
Macintosh Roman-8, DEC Multinational and other non-standard character
encodings, but these are generally non-portable and should be avoided where
possible.

One common practice in western Europe is to use ISO-8859-1 so that the majority of
common accented letters can be used as single bytes, and to use character entity
references or numeric entities for all other characters. This has the advantage that such
files can be opened in almost any single-byte editor. The drawback is that numeric
entities are not mnemonic, and character entities have to be declared in DTD or internal
subset, but if they are rare, this may not be a serious problem.

Bertilo Wennergren writes:

UTF-16 is an encoding that represents each Unicode character of the first plane (the first
64K characters) of Unicode with a 16-bit unit¯in practice with two bytes for each
character. Thus it is backwards compatible with neither ASCII nor Latin-1. UTF-16 can
also access an additional 1 million characters by a mechanism known as surrogate pairs
(two 16-bit units for each character).

‘. . . the mechanisms for signalling which of the two are in use, and for bringing other
encodings into play, are [. . .] in the discussion of character encodings.’ The XML
Specification [p.44] explains how to specify in your XML file which coded character set
you are using.

‘Regardless of the specific encoding used, any character in the ISO 10646 character set
may be referred to by the decimal or hexadecimal equivalent of its bit string’: so no
matter which character set you personally use, you can still refer to specific individual
characters from elsewhere in the encoded repertoire by using &#dddd; (decimal
character code) or &#xHHHH; (hexadecimal character code, in uppercase). The
terminology can get confusing, as can the numbers: see the ISO 10646 Concept
Dictionary101. Rick Jelliffe has XML-ized the ISO character entity sets102. Mike Brown’s
encoding information at http://skew.org/xml/tutorial/103 is a very useful
explanation of the need for correct encoding. There is an excellent online database of
glyphs and characters in many encodings from the Estonian Language Institute server at
http://www.eki.ee/letter/104.

104http://cns-web.bu.edu/pub/djohnson/web_files/i18n/ISO-10646.html
104http://xml.coverpages.org/xml-ISOents.txt
104http://skew.org/xml/tutorial/
104http://www.eki.ee/letter/

27

C.8 What’s a Document Type Definition (DTD) and where do I get one?
A specification of
document
structure. You
can write one or
download them.

A DTD is a description in XML Declaration Syntax of a particular type or class of
document. It sets out what names are to be used for the different types of element,
where they may occur, and how they all fit together. (A Schema [p.31] does the same
thing in XML Document Syntax, and allows more extensive data-checking.)

For example, if you want a document type to be able to describe Lists which contain
Items, the relevant part of your DTD might contain something like this:�

�

�

�
<!ELEMENT List (Item)+>
<!ELEMENT Item (#PCDATA)>

This defines a list as an element type containing one or more items (that’s the plus
sign); and it defines items as element types containing just plain text (Parsed
Character Data or PCDATA). Validators read the DTD before they read your
document so that they can identify where every element type ought to come and
how each relates to the other, so that applications which need to know this in
advance (most editors, search engines, navigators, and databases) can set themselves
up correctly. The example above lets you create lists like:'

&

$

%

<List>
<Item>Chocolate</Item>
<Item>Music</Item>
<Item>Surfing</Item>

</List>

(The indentation in the example is just for legibility while editing: it is not required
by XML.)

A DTD provides applications with advance notice of what names and structures can
be used in a particular document type. Using a DTD and a validating editor means
you can be certain that all documents of that particular type will be constructed and
named in a consistent and conformant manner.

DTDs are not required for processing well-formed documents [D.3, p.47], but they
are needed if you want to take advantage of XML’s special attribute types like the
built-in ID/IDREF cross-reference mechanism; or the use of default attribute values;
or references to external non-XML files (‘Notations’); or if you simply want a check
on document validity before processing.

There are thousands of DTDs already in existence in all kinds of areas (see the
SGML/XML Web pages105 for pointers). Many of them can be downloaded and used
freely; or you can write your own (see the question on creating your own DTD
[p.30]. Old SGML DTDs need to be converted to XML for use with XML systems: read
the question on converting SGML DTDs to XML [p.59], but most popular SGML
DTDs are already available in XML form.

105http://xml.coverpages.org/

28

Some XML editors use a binary compiled format of DTD produced by their own
management routines to allow a single person in an organisation to be in charge of
modifications, and to distribute only an unmodifiable (binary compiled) version to
users.

The alternatives to a DTD are various forms of Schema [p.31]. These provide more
extensive validation features than DTDs, including character data content validation.

C.9 Does XML let me make up my own tags?
Yes but they’re
not called tags.
They’re element
types.

No, it lets you make up names for your own element types. If you think tags and
elements are the same thing you are already in considerable trouble: read the rest of
this question carefully.

The same applies if you are thinking in terms of fields (see How do I get XML into or
out of my database? [p.51]). Wrong paradigm, wrong language.

Bob DuCharme writes:

Don’t confuse the term ‘tag’ with the term ‘element’. They are not interchangeable. An
element usually contains two different kinds of tag: a start-tag and an end-tag, with text
or more markup between them.

XML lets you decide which elements you want in your document and then indicate
your element boundaries using the appropriate start- and end-tags for those elements.
Each <!ELEMENT... declaration defines a type of element that may be used in a
document conforming to that DTD. We call this type of element an ‘element type’. Just
as the HTML DTD includes the H1 and P element types, your document can have color
and price element types, or anything else you want.

Normal non-empty elements are made up of a start-tag, the element’s content, and an
end-tag. <color>red</color> is a complete instance of the color element. <color> is
only the start-tag of the element, showing where it begins; it is not the element itself.

Empty elements are a special case that may be represented either as a pair of start- and
end-tags with nothing between them (eg <price retail="123"></price>) or as a
single empty element start-tag that has a closing slash to tell the parser ‘don’t go looking
for an end-tag to match this’ (eg <price retail="123"/>).

C.10 How do I create my own document type?
Analyse the class
of documents,
and write a DTD
or Schema

Document types usually need a formal description, either a DTD or a Schema. Whilst
it is possible to process well-formed XML documents without any such description,
trying to create them without one is asking for trouble. A DTD or Schema is used
with an XML editor or API interface to guide and control the construction of the
document, making sure the right elements go in the right places.

Creating your own document type therefore begins with an analysis of the class of
documents you want to describe: reports, invoices, letters, configuration files,
credit-card verification requests, or whatever. Once you have the structure correct,
you write code to express this formally, using DTD [p.30] or Schema syntax.

29

C.11 How do I write my own DTD?
Learn XML
Declaration
SyntaxYou need to use the XML Declaration Syntax (very simple: declaration keywords

begin with <! rather than just the open angle bracket, and the way the declarations
are formed also differs slightly). Here’s an example of a DTD for a shopping list,
based on the fragment used earlier [p.28]:�

�

�

�
<!ELEMENT Shopping-List (Item)+>
<!ELEMENT Item (#PCDATA)>

It says that there shall be an element called Shopping-List and that it shall contain
elements called Item: there must be at least one Item (that’s the plus sign) but there
may be more than one. It also says that the Item element may contain only parsed
character data (PCDATA, ie text: no further markup).

Because there is no other element which contains Shopping-List, that element is
assumed to be the ‘root’ element, which encloses everything else in the document.
You can now use it to create an XML file: give your editor the declarations:�

�

�

�
<?xml version="1.0"?>
<!DOCTYPE Shopping-List SYSTEM "shoplist.dtd">

(assuming you put the DTD in that file). Now your editor will let you create files
according to the pattern:'

&

$

%

<Shopping-List>
<Item>Chocolate</Item>
<Item>Sugar</Item>
<Item>Butter</Item>

</Shopping-List>

It is possible to develop complex and powerful DTDs of great subtlety, but for any
significant use you should learn more about document systems analysis and
document type design. See for example Developing SGML DTDs: From Text to Model to
Markup106: this was written for SGML but perhaps 95% of it applies to XML as well,
as XML is much simpler than full SGML¯see the list of restrictions [D.5, p.49] which
shows what has been cut out.

Warning

Incidentally, a DTD file never has a DOCTYPE Declaration in it: that only occurs in an
XML document instance (it’s what references the DTD). And a DTD file also never has
an XML Declaration at the top either. Unfortunately there is still software around which
inserts one or both of these.

106Maler/el Andaloussi.

30

C.12 Can a root element type be explicitly declared in the DTD?
No, use the
Document Type
Declaration.No. This is done in the document’s Document Type Declaration, not in the DTD.

Bob DuCharme writes:

In a Document Type Declaration like this:
<!DOCTYPE chapter SYSTEM "docbookx.dtd"> the whole point of the chapter part
is to identify which of the element types declared in the specified DTD should be used as
the root element. I believe the highest level element in DocBook is set, but I find it hard
to imagine someone creating a document to represent a set of books. We are free to use
set, book, chapter, article, or even para as the document element for a valid
DocBook document.

[One job some parsers do is determine which element type[s] in a DTD are not
contained in the content model of any other element type: these are by deduction the
prime candidates for being default root elements. (PF)]

This is A Good Thing, because it adds flexibility to how the DTD is used. It’s the reason
that XML (and SGML) have lent themselves so well to electronic publishing systems in
which different elements were mixed and matched to create different documents all
conforming to the same DTD.

I’ve seen schema proposals that let you specify which of a schema’s element types
could be a document’s root element, but after a quick look at section 3.3 of Part 1 of the
W3C Schema Recommendation107 and the RELAX NG schema for RELAX, I don’t
believe that either of these let you do this. I could be wrong.

C.13 I keep hearing about alternatives to DTDs. What’s a Schema?
Like a DTD for
validating content
as well as
structure.

The W3C XML Schema recommendation108 provides a means of specifying formal
data typing and validation of element content in terms of data types, so that
document type designers can provide criteria for checking the data content of
elements as well as the markup itself. Schemas are written in XML Document
Syntax, like XML documents are, avoiding the need for processing software to be able
to read XML Declaration Syntax (used for DTDs).

There is a separate Schema FAQ at http://www.schemavalid.com. The term
‘vocabulary’ is sometimes used to refer to DTDs and Schemas together. Schemas are
aimed at e-commerce, data control, and database-style applications where character
data content requires validation and where stricter data control is needed than is
possible with DTDs; or where strong data typing is required. They are usually
unnecessary for traditional text document publishing applications.

Unlike DTDs, Schemas cannot be specified in an XML Document Type Declaration.
They can be specified in a Namespace [p.51], where Schema-aware software should
pick it up, but this is optional:

107http://www.w3.org/TR/xmlschema-1/#cElement_Declarations
108http://www.w3.org/TR/xmlschema-0/

31

'

&

$

%

<invoice id="abc123"
xmlns="http://example.org/ns/books/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://acme.wilycoyote.org/xsd/invoice.xsd">

...
</invoice>

More commonly, you specify the Schema in your processing software, which should
record separately which Schema is used by which XML document instance.

In contrast to the complexity of the W3C Schema model, Relax NG is a lightweight,
easy-to-use XML schema language devised by James Clark (see http://relaxng.org/)
with development hosted by OASIS109. It allows similar richness of expression and
the use of XML as its syntax, but it provides an additional, simplified, syntax which
is easier to use for those accustomed to DTDs.

Warning

Authors and publishers should note that the English plural of Schema is Schemas: the use
of the singular to do duty for the plural is a foible dear to the semi-literate; the use of the
old (Greek) plural schemata is unnecessary didacticism.

Writers should also note that the plural of DTD is DTDs110: there is no
apostrophe¯see Eats, Shoots & Leaves: The Zero-Tolerance Approach to Punctuationa.

aTruss.

Bob DuCharme writes:

Many XML developers were dissatisfied with the syntax of the markup declarations
described in the XML spec for two reasons. First, they felt that if XML documents were
so good at describing structured information, then the description of a document type’s
own structure (its schema) should be in an XML document instead of written with its
own special syntax. In addition to being more consistent, this would make it easier to edit
and manipulate the schema with regular document manipulation tools. Secondly, they felt
that traditional DTD notation didn’t allow document type designers the power to impose
enough constraints on the data¯for example, the ability to say that a certain element type
must always have a positive integer value, that it may not be empty, or that it must be one
of a list of possible choices. This eases the development of software using that data
because the developer has less error-checking code to write.

Peter Flynn writes:

A DTD [p.28] is only for specifying the element structure of an XML file, with a very
limited amount of control over attribute values. It gives the names of the elements,
attributes, and entities that can be used, and how they fit together. DTDs are designed
for use with traditional text documents, not rectangular or tabular data, so the concept of
data types is not relevant: text is just text. If you need to specify numeric ranges or to
define limitations or checks on the character data (text) content, a DTD is the wrong tool.

109http://www.oasis-open.org/committees/relax-ng/
110http://xml.coverpages.org/properSpellingForPluralOfDTD.html

32

C.14 How will XML affect my document links?
XML Links are
much more
powerful, but not
yet implemented
in browsers

The linking abilities of XML systems are potentially much more powerful than those
of HTML, so you’ll be able to do much more with them. Existing href-style links will
remain usable, but the new linking technology is based on the lessons learned in the
development of other standards involving hypertext, such as TEI111 and HyTime112,
which let you manage bidirectional and multi-way links, as well as links to a whole
element or span of text (within your own or other documents) rather than to a single
point. These features have been available to SGML users for many years, so there is
considerable experience and expertise available in using them. Currently only Mozilla
Firefox implements XLink.

The XML Linking Specification (XLink)113 and the XML Extended Pointer Specification
(XPointer)114 documents contain the details. An XLink can be either a URI or a
TEI-style Extended Pointer (XPointer [p.33]), or both. A URI on its own is assumed to
be a resource; if an XPointer follows it, it is assumed to be a sub-resource of that URI;
an XPointer on its own is assumed to apply to the current document (all exactly as
with HTML).

An XLink may use one of #, ?, or |. The # and ? mean the same as in HTML
applications; the | means the sub-resource can be found by applying the link to the
resource, but the method of doing this is left to the application. An XPointer can only
follow a #.

The TEI Extended Pointer Notation115 (EPN) is much more powerful than the
fragment address on the end of some URIs, as it allows you to specify the location of
a link end using the structure of the document as well as (or in addition to) known,
fixed points like IDs. For example, the linked second occurrence [p.33] of the word
‘XPointer’ two paragraphs back could be referred to with the URI (shown here with
linebreaks and spaces for clarity: in practice it would of course be all one long string):#

"

!

http://xml.silmaril.ie/faq.xml#ID(hypertext)
.child(1,#element,’answer’)
.child(2,#element,’para’)
.child(1,#element,’link’)

This means the first link element within the second paragraph within the answer in
the element whose ID is "hypertext" (this question). Count the objects from the start
of this question (which has the ID "hypertext") in the XML source116:

1. the first child object is the element containing the question (quandaentry);

2. the second child object is the answer (the answer element);

3. within this element go to the second paragraph;

111http://www.tei-c.org/
112http://xml.coverpages.org/hytime.html
113http://www.w3.org/TR/xlink/
114http://www.w3.org/TR/WD-xptr
115http://etext.virginia.edu/bin/tei-tocs?div=DIV2;id=SAXR
116http://xml.silmaril.ie/faq.sgml

33

4. find the first link element.

Eve Maler explained the relationship of XLink and XPointer as follows:

XLink governs how you insert links into your XML document, where the link might
point to anything (eg a GIF file); XPointer governs the fragment identifier that can go
on a URL when you’re linking to an XML document, from anywhere (eg from an
HTML file).

[Or indeed from an XML file, a URI in a mail message, etc. . . Ed.]

David Megginson has produced an xpointer117 function for Emacs/psgml which will
deduce an XPointer for any location in an XML document. XML Spy has a similar
function.

C.15 Can I encode mathematics using XML?
Yes, using
MathML.

Yes, if the document type [p.28] you use provides for math, and your users’ browsers
are capable of rendering it. The mathematics-using community has developed the
MathML Recommendation118 at the W3C, which is a native XML application suitable
for embedding in other DTDs and Schemas.

It is also possible to make XML fragments from other DTDs, such as ISO 12083
Math119, or OpenMath120, or one of your own making. Browsers which display
math embedded in SGML existed for many years (eg DynaText, Panorama, Multidoc
Pro), and mainstream browsers are now rendering MathML. David Carlisle has
produced a set of stylesheets121 for rendering MathML in browsers. It is also possible
to use XSLT to convert XML math markup to for print (PDF) rendering, or to use
XSL:FO.

Please note that XML is not itself a programming language, so concepts such as
arithmetic and if-statements (if-then-else logic) are not meaningful in normal XML
documents.

C.16 How does XML handle metadata?
Any way you
want.

Because XML lets you define your own markup languages, you can make full use of
the extended hypertext features of XML (see the question on Links [p.33]) to store or
link to metadata in any format (eg using ISO 11179122, as a Topic Maps Published
Subject123, with Dublin Core, Warwick Framework124, or with Resource Description
Framework (RDF)125, or even Platform for Internet Content Selection (PICS)126).

117http://www.megginson.com/Software/psgml-xpointer.el
118http://www.w3.org/Math/
119http://xml.coverpages.org/gen-apps.html#iso12083DTDs
120http://www.openmath.org/
121http://www.mathmlconference.org/2002/presentations/carlisle/
122http://www.sdct.itl.nist.gov/~ftp/x3l8/other/Standards/iso11179/
123http://www.oasis-open.org/committees/tm-pubsubj/
124http://purl.oclc.org/metadata/dublin_core/
125http://www.dstc.edu.au/RDU/RDF/
126http://www.w3.org/PICS/

34

There are no predefined elements in XML, because it is an architecture, not an
application, so it is not part of XML’s job to specify how or if authors should or
should not implement metadata. You are therefore free to use any suitable method.
Browser makers may also have their own architectural recommendations or
methods to propose.

C.17 How do I use graphics in XML?
Reference them
as for HTML or
use XLink. Or
embed SVG.

Graphics have traditionally just been links which happen to have a picture file at the
end rather than another piece of text. They can therefore be implemented in any way
supported by the XLink and XPointer specifications (see How will XML affect my
document links? [p.33]), including using similar syntax to existing HTML images.
They can also be referenced using XML’s built-in NOTATION and ENTITY mechanism in
a similar way to standard SGML, as external unparsed entities.

However, the SVG specification (see the tip below [p.36]) lets you use XML markup to
draw vector graphics objects directly in your XML file. This provides enormous
power for the inclusion of portable graphics, especially interactive or animated
sequences, and it is now slowly becoming supported in browsers.

The XML linking specifications for external images give you much better control over
the traversal and activation of links, so an author can specify, for example, whether
or not to have an image appear when the page is loaded, or on a click from the user,
or in a separate window, without having to resort to scripting.

XML itself doesn’t predicate or restrict graphic file formats: GIF, JPG, TIFF, PNG,
CGM, EPS, and SVG at a minimum would seem to make sense; however, vector
formats (EPS, SVG) are normally essential for non-photographic images (diagrams).

You cannot embed a raw binary graphics file (or any other binary [non-text] data)
directly into an XML file because any bytes happening to resemble markup would get
misinterpreted: you must refer to it by linking (see below). It is, however, possible to
include a text-encoded transformation of a binary file as a CDATA Marked Section,
using something like UUencode with the markup characters], & and > removed from
the map so that they could not occur as an erroneous CDATA termination sequence
and be misinterpreted. You could even use simple hexadecimal encoding as used in
PostScript. For vector graphics, however, the solution is to use SVG (see the tip below
[p.36]).

Sound files are binary objects in the same way that external graphics are, so they can
only be referenced externally (using the same techniques as for graphics). Music files
written in MusiXML or an XML variant of SMDL could however be embedded in the
same way as for SVG.

The point about using entities to manage your graphics is that you can keep the list
of entity declarations separate from the rest of the document, so you can re-use the
names if an image is needed more than once, but only store the physical file
specification in a single place. This is available only when using a DTD, not a Schema.

35

Bob DuCharme writes:

All the data in an XML document entity must be parsable XML. You can define an
external entity as either a parsed entity (parsable XML) or an unparsed entity (anything
else). Unparsed entities can be used for picture files, sound files, movie files, or whatever
you like. They can only be referenced from within a document as the value of an attribute
(much like a bitmap picture on an HTML Web page is the value of the img element’s src
attribute) and not part of the actual document. In an XML document, this attribute must
be declared to be of type ENTITY, and the entity’s declaration must specify a declared
NOTATION, because if the entity isn’t XML, the XML processor needs to know what it is.
For example, in the following document, the colliepic entity is declared to have a JPEG
notation, and it’s used as the value of the empty dog element’s picfile attribute.'

&

$

%

<?xml version="1.0"?>
<!DOCTYPE dog [
<!NOTATION JPEG SYSTEM "Joint Photographic Experts Group">
<!ENTITY colliepic SYSTEM "lassie.jpg" NDATA JPEG>
<!ELEMENT dog EMPTY>
<!ATTLIST dog picfile ENTITY #REQUIRED>
]>
<dog picfile="colliepic"/>

The Entity method is particularly useful when you have many images, or many repeated
uses of the same images, because you only declare them once, at the top of the
document, making image management much easier.

The XLink and XPointer linking specifications describe other ways to point to a
non-XML file such as a graphic. These offer more sophisticated control over the external
entity’s position, handling, and appearance within the XML document.

Peter Murray-Rust writes:

GIFs and JPEGs cater for bitmaps (pixel representations of images: all made up of
coloured dots). Vector graphics (scalable, made up of drawing specifications) are
addressed in the W3C’s graphics activity as Scalable Vector Graphics (see
http://www.w3.org/Graphics/SVG). With the specification now complete, it is
possible to transmit the graphical representation as vectors directly within the XML file.
For many graphics objects this will mean greatly decreased download time and scaling
without loss of detail.

Max Dunn writes:

SVG has really taken off recently, and is quite an XML success story [. . .] there are
already nearly conformant implementations. We recently started an SVG FAQ at
http://www.siliconpublishing.org/svgfaq/ which we are planning to move to
http://www.svgfaq.com/.

XSLT can be used to generate SVG from XML; details are at
http://www.siliconpublishing.org/svgfaq/XSLT.asp (be careful to use XSLT, not
Microsoft’s obsolete WD-xsl127). Documents can also interact with SVG images (see
http://www.xml.com/pub/a/2000/03/22/style/index.html128).

128http://www.netcrucible.com/xslt/msxml-faq.htm
128http://www.xml.com/pub/a/2000/03/22/style/index.html

36

C.18 What is parsing and how do I do it in XML?
Parsing is splitting
up information
into its
component parts

Parsing is the act of splitting up information into its component parts (schools used
to teach this in language classes until the teaching profession collectively caught the
anti-grammar disease).

‘Mary feeds Spot’ parses as

1. Subject = Mary, proper noun, nominative case

2. Verb = feeds, transitive, third person singular, present tense

3. Object = Spot, proper noun, accusative case

In computing, a parser is a program (or a piece of code or API that you can reference
inside your own programs) which analyses files to identify the component parts. All
applications that read input have a parser of some kind, otherwise they’d never be
able to figure out what the information means. Microsoft Word contains a parser
which runs when you open a .doc file and checks that it can identify all the hidden
codes. Give it a corrupted file and you’ll get an error message.

XML applications are just the same: they contain a parser which reads XML and
identifies the function of each the pieces of the document, and it then makes that
information available in memory to the rest of the program.

While reading an XML file, a parser checks the syntax (pointy brackets, matching
quotes, etc) for well-formedness, and reports any violations (reportable errors). The
XML Specification [p.44] lists what these are.

Validation is another stage beyond parsing. As the component parts of the program
are identified, a validating parser can compare them with the pattern laid down by a
DTD or a Schema, to check that they conform. In the process, default values and
datatypes (if specified) can be added to the in-memory result of the validation that
the validating parser gives to the application.'

&

$

%

<person corpid="abc123" birth="1960-02-31" gender="female">
<name>
<forename>Judy</forename>
<surname>O’Grady</surname>

</name>
</person>

The example above parses as:

1. Element person identified with Attribute corpid containing "abc123" and
Attribute birth containing "1960-02-31" and Attribute gender containing
"female" containing ...

2. Element name containing ...

3. Element forename containing text ‘Judy’ followed by ...

4. Element surname containing text ‘O’Grady’

(and lots of other stuff too).

37

As well as built-in parsers, there are also stand-alone parser-validators, which read
an XML file and tell you if they find an error (like missing angle-brackets or quotes,
or misplaced markup). This is essential for testing files in isolation before doing
something else with them, especially if they have been created by hand without an
XML editor, or by an API which may be too deeply embedded elsewhere to allow easy
testing.

Bill Rayer writes:

For standalone parsing/validation use software like James Clark’s nsgmls129 or Richard
Tobin’s rxp130. Both work under Linux and Windows/DOS. The difference is in the
format of the error listing (if any), and that some versions of nsgmls do not retrieve DTDs
or other files over the network, whereas rxp does.

Make sure your XML file correctly references its DTD in a Document Type
Declaration, and that the DTD file[s] are locally accessible (rxp will retrieve them if you
have an Internet connection; nsgmls may not, so it may need a local copy).

Download and install the software. Make sure it is installed to a location where your
operating system can find it. If you don’t know what any of this means, you will need
some help from someone who knows how to download and install software on your type
of operating system.

For nsgmls, copy pubtext/xml.soc and pubtext/xml.dcl to your working directory.
To validate myfile.xml, open a shell window (Linux) or an MS-DOS (‘command’)

window (Microsoft Windows). In these examples we’ll assume your XML file is called
myfile.xml and it’s in a folder called myfolder. Use the real names of your folder and
file when you type the commands.

For onsgmls: $ onsgmls -wxml -wundefined -cxml.soc -s myfile.xml There
are many other options for onsgmls which are described on the Web page131. The
ones given here are required because it’s based on an SGML parser and these
options switch it to XML mode and suppress the normal output, leaving just the
errors (if any).(In Microsoft Windows you may have to prefix the onsgmls
command with the full path to wherever it was installed, eg
C:\Program Files\OpenSP\bin\onsgmls).

For rxp: $ rxp myfile.xml Rxp also has some options which are described on its
Web page132.(In Microsoft Windows you may have to prefix the rxp command
with the full path to wherever it was installed, eg
C:\Program Files\ltxml2\bin\rxp).

C.19 How do I include one XML file in another?
Use a general
entity, same as for
SGMLOne method is to use Document Entities, which work exactly the same as for SGML.

First you declare the entity you want to include, and then you reference it by name:

132http://www.jclark.com/sp
132http://www.cogsci.ed.ac.uk/~richard/rxp.html
132http://openjade.sourceforge.net/
132http://www.cogsci.ed.ac.uk/~richard/rxp.html

38

'

&

$

%

<?xml version="1.0"?>
<!DOCTYPE novel SYSTEM "/dtd/novel.dtd" [
<!ENTITY chap1 SYSTEM "mydocs/chapter1.xml">
<!ENTITY chap2 SYSTEM "mydocs/chapter2.xml">
<!ENTITY chap3 SYSTEM "mydocs/chapter3.xml">
<!ENTITY chap4 SYSTEM "mydocs/chapter4.xml">
<!ENTITY chap5 SYSTEM "mydocs/chapter5.xml">
]>
<novel>

<header>
...blah blah...

</header>
&chap1;
&chap2;
&chap3;
&chap4;
&chap5;
</novel>

The difference between this method and the one used for including a DTD fragment
(see How do I include one DTD (or fragment) in another? [p.60]) is that this uses an
external general (file) entity which is referenced in the same way as for a character
entity (with an ampersand).

The one thing to make sure of is that the included file must not have an XML or
DOCTYPE Declaration on it. If you’ve been using one for editing the fragment,
remove it before using the file in this way. Yes, this is a pain in the butt, but if you
have lots of inclusions like this, write a script to strip off the declaration (and paste it
back on again for editing).

Schemas do not support entities, so the alternative is to use XInclude133. This is a
W3C specification for including one XML document (or fragment) inside another.'

&

$

%

<?xml version="1.0"?>
...
<article xmlns="http://docbook.org/ns/docbook"

xmlns:xi="http://www.w3.org/2001/XInclude">
<articleinfo>
<xi:include href="metadata.xml" parse="xml"

xpointer="title"/>
</articleinfo>
<sect1>

...
</sect1>

</article>

Your processing software must be able to handle XInclude for this to work. The
XPointer134 syntax can direct the parser to a specific location within the document,
unlike entities, where the entire document is included.

133http://www.w3.org/TR/xinclude/
134http://www.w3.org/TR/xptr/

39

C.20 When should I use a CDATA Marked Section?
CDATA is only for
text containing
markup-like
characters.

You should almost never need to use CDATA Sections. The CDATA mechanism was
designed to let an author quote fragments of text containing markup characters (the
open-angle-bracket and the ampersand), for example when documenting XML (this
FAQ uses CDATA Sections quite a lot, for obvious reasons). A CDATA Section turns off
markup recognition for the duration of the section (it gets turned on again only by
the closing sequence of double end-square-brackets and a close-angle-bracket).

Consequently, nothing in a CDATA section can ever be recognised as anything to do
with markup: it’s just a string of opaque characters, and if you use an XML
transformation language like XSLT, any markup characters in it will get turned into
their character entity equivalents.

If you try, for example, to use:�
�

�
�

some text with <![CDATA[markup]]> in it.

in the expectation that the embedded markup would remain untouched, it won’t: it
will just output�
�

�
�

some text with markup in it.

In other words, CDATA Sections cannot preserve the embedded markup as markup.
Normally this is exactly what you want because this technique was designed to let
people do things like write documentation about markup. It was not designed to
allow the passing of little chunks of (possibly bogus or invalid) unparsed HTML
embedded inside your own XML through to a subsequent process¯because that
would risk invalidating the output.

As a result you cannot expect to keep markup untouched simply because it looked as
if it was safely ‘hidden’ inside a CDATA section: it can’t be used as a magic shield to
preserve HTML markup for future use as markup, only as characters.

Tip

Read How can I handle embedded HTML in my XML? [p.40] as well, which is very closely
related.

C.21 How can I handle embedded HTML in my XML?
Provide for it in
the output, use a
deep copy, or try
disable-output-
escaping.

Apart from using CDATA Sections [p.40], there are two common occasions when
people want to handle embedded HTML inside an XML element:

1. when they have received (possibly poorly-designed) XML from somewhere else
which they must find a way to handle;

40

2. when they have an application which has been explicitly designed to store a
string of characters containing < and & character entity references with
the objective of turning them back into markup in a later process (eg FreeMind,
Atom).

Generally, you want to avoid this kind of trick, as it usually indicates that the
document structure and design has been insufficiently thought out. However, there
are occasions when it becomes unavoidable, so if you really need or want to use
embedded HTML markup inside XML, and have it processable later as markup, there
are a couple of techniques you may be able to use:

</> Provide templates for the handling of that markup in your XSLT transformation
or whatever software you use which simply replicates what was there, eg'

&

$

%

<xsl:template match="b">

<xsl:apply-templates/>

</xsl:template/>

</> Use XSLT’s ‘deep copy’ instruction, which outputs nested well-formed markup
verbatim, eg�

�

�

�
<xsl:template match="ol">
<xsl:copy-of select="."/>

</xsl:template/>

</> As a last resort, use the disable-output-escaping attribute on the xsl:text
element of XSL[T] which is available in some processors, eg�
�

�
�

<xsl:text disable-output-escaping="yes"><![CDATA[Now!]]></xsl:text>

</> Some processors (eg JX) are now providing their own equivalents for disabling
output escaping. Their proponents claim it is ‘highly desirable’ or ‘what most
people want’, but it still needs to be treated with care to prevent unwanted
(possibly dangerous) arbitrary code from being passed untouched through your
system. It also adds another dependency to your software.

For more details of using these techniques in XSL[T], see the relevant question in the
XSL FAQ135.

Tip

Read When should I use a CDATA Marked Section? [p.40] as well, which is very closely
related.

135http://www.dpawson.co.uk/xsl/sect2/cdata.html

41

C.22 What are the special characters in XML?
Just five: <
(<), & (&),
> (>), "
("), and '
(’).

For normal text (not markup), there are no special characters except < and &: just
make sure your XML Declaration refers to the correct encoding scheme for the
language and/or writing system you want to use, and that your computer correctly
stores the file using that encoding scheme. See the question on non-Latin characters
[p.26] for a longer explanation.

Apart from the invisible ASCII control characters (the ones you can’t type), all other
characters are just normal text. Currency signs (€, £, $, ƒ, and others), all the
punctuation (except < and &), and all other letters, signs, and symbols in any
language or writing system are just text.

If your keyboard will not allow you to type the characters you want, or if you want
to use characters outside the limits of the encoding scheme you have chosen, you can
use a symbolic notation called ‘entity referencing’. Entity references can either be
numeric, using the decimal or hexadecimal Unicode136 code point for the character (eg
if your keyboard has no Euro symbol (€) you can type €); or they can be
character, using an established set of names which you can declare in your DTD (eg
<!ENTITY euro "€">) which then lets you use the name € in your
document. If you are using a Schema, you must use the numeric form for all except
the five below because Schemas have no way to make character entity declarations.

If you use XML with no DTD, then these five character entities are assumed to be
predeclared, and you can use them without declaring them:

< The less-than character (<) starts element markup (the first character of a
start-tag or an end-tag).

& The ampersand character (&) starts entity markup (the first character of a
character entity reference).

> The greater-than character (>) ends a start-tag or an end-tag.

" The double-quote character (") can be symbolised with this character entity
reference when you need to embed a double-quote inside a string which is
already double-quoted.

' The apostrophe or single-quote character (’) can be symbolised with this
character entity reference when you need to embed a single-quote or
apostrophe inside a string which is already single-quoted.

If you are using a DTD then you must declare all the character entities you need to
use (if any), including any of the five above that you plan on using (they cease to be
predeclared if you use a DTD). If you are using a Schema, you must use the numeric
form for all except the five above because Schemas have no way to make character
entity declarations.

136http://www.unicode.org/

42

Warning

There are circumstances where you can use special characters as themselves, such as in
CDATA Sections [p.40]. Most control characters are prohibited in XML: see the
Specification [p.44] for exact details.

There are also no reserved words as such in the user namespace of XML: you can call
an element element and an attribute attribute and so on as in the following
(perverse) example:'

&

$

%

<?xml version="1.0"?>
<!DOCTYPE DOCTYPE SYSTEM "SYSTEM" [
<!ELEMENT DOCTYPE (ELEMENT+)>
<!ATTLIST ELEMENT ATTLIST ENTITY #IMPLIED>
<!NOTATION DOCTYPE SYSTEM "ENTITY">
<!ENTITY NOTATION SYSTEM "ENTITY" NDATA DOCTYPE>
]>
<DOCTYPE>

<ELEMENT ATTLIST="NOTATION">foo</ELEMENT>
</DOCTYPE>

where the file SYSTEM contains the declaration: <!ELEMENT ELEMENT (#PCDATA)> and
the file ENTITY does not even exist.

There are keywords like DOCTYPE and IMPLIED which are reserved Names, but they are
prefixed by a flag character (the Markup Declaration Open character or the Reserved
Name Indicator) so that they cannot be confused with user-specified Names.

43

D Developers and Implementors

D.1 Where’s the spec?
Right here137

Right here: Extensible Markup Language (XML) 1.0138

(http://www.w3.org/TR/REC-xml). Includes the EBNF, and all the normative material.
There are also versions in Japanese139; Spanish140; Korean141; a Java-ised annotated
version142, and ’s book, .

Eve Maler maintains the DTD used for the spec itself143; the DTD is also to encode
several other W3C specifications, such as XLink, XPointer, DOM, XML Schema, etc.
There is documentation144 available for the DTD. Note that the XML spec needs to
use a special one-off version of the DTD145, since the real original DTD used for it has
long since been lost.

D.2 I’m trying to understand the XML Spec: why does it have such difficult
terminology?

It has to be formal
to be accurate.

For implementation to succeed, the terminology needs to be precise. Design goal
eight of the specification tells us that ‘the design of XML shall be formal and concise’.
To describe XML, the specification therefore uses formal language drawn from several
fields, specifically those of document engineering, international standards and
computer science. This is often confusing to people who are unused to these
disciplines because they use well-known English words in a specialised sense which
can be very different from their common meanings¯for example: grammar,
production, token, or terminal.

The specification does not explain these terms because of the other part of the design
goal: the specification should be concise. It doesn’t repeat explanations that are
available elsewhere: it is assumed you know this and either know the definitions or
are capable of finding them. In essence this means that to grok the fullness of the
spec, you do need a knowledge of some SGML and computer science, and have some
exposure to the language of formal standards.

Sloppy terminology in specifications causes misunderstandings and makes it hard to
implement consistently, so formal standards have to be phrased in formal
terminology. This FAQ is not a formal document, and the astute reader will already
have noticed it refers to ‘element names’ where ‘element type names’ is more correct;
but the former is more widely understood.

Those new to the terminology may find it useful to read something like the Gentle

138Bray et al.
139http://www.fxis.co.jp/DMS/sgml/xml/
140http://xml.silmaril.ie/faq-es.html
141http://xml.t2000.co.kr/faq/index.html
142http://www.xml.com/axml/testaxml.htm
143http://www.w3.org/XML/1998/06/xmlspec-v21.dtd
144http://www.w3.org/XML/1998/06/xmlspec-report-v21.htm
145http://www.w3.org/XML/1998/06/xmlspec-v21a.dtd

44

Introduction to XML146 or XML: The Annotated Specification147.

D.3 What are these terms DTDless, valid, and well-formed?
Well-formed
means
syntactically
correct (DTD or
not); valid means
a DTD has been
used.

XML lets you use a Schema or Document Type Definition (DTD) to describe the
markup (elements and other constructs) available in any specific type of document.
However, the design and construction of Schemas and DTD can be complex and
non-trivial, so XML also lets you work without one. DTDless operation means you
can invent markup without having to define it formally, provided you stick to the
rules of XML syntax.

To make this work, a DTDless file is assumed to define its own markup purely by the
existence and location of elements where you create them. When an XML application
encounters a DTDless file, it builds its internal model of the document structure
while it reads it, because it has no Schema or DTD to tell it what to expect. There
must therefore be no surprises or ambiguous syntax. To achieve this, the document
must be ‘well-formed’ (must follow the rules).

To understand why this concept is needed, look at standard HTML as an example:

</> The img element is declared (in the DTDs for HTML) as EMPTY, so it doesn’t
have an end-tag (there is no such thing as);

</> Many other HTML elements (such as para) allow you to omit theend-tag for
brevity when using the SGML version of HTML.

</> If an XML processor reads an HTML file without knowing this (because it isn’t
using a DTD), and it encounters an or a <para> (or any other start-tag), it
would have no way to know whether or not to expect an end-tag. This makes
it impossible to know if the rest of the file is correct or not, because it has now
no evidence of whether it is inside an element or if it has finished with it.

Well-formed documents therefore require start-tags and end-tags on every normal
element, and any EMPTY elements must be made unambiguous, either by using
normal start-tags and end-tags, or by appending a slash to the name of the start-tag
before the closing > as a sign that there will be no separate end-tag.

All XML documents, both DTDless and valid, must be well-formed. They must start
with an XML Declaration if necessary (for example, identifying the character
encoding or using the Standalone Document Declaration):#

"

!

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<foo>

<bar>...<blort/>...</bar>
</foo>

146Sperberg-McQueen/Burnard.
147DuCharme.

45

David Brownell writes:

XML that’s just well-formed doesn’t need to use a Standalone Document Declaration at
all. Such declarations are there to permit certain speedups when processing documents
while ignoring external parameter entities¯basically, you can’t rely on external
declarations in standalone documents. The types that are relevant are entities and
attributes. Standalone documents must not require any kind of attribute value
normalisation or defaulting, otherwise they are invalid.

It’s also possible to use a Document Type Declaration with DTDless files, even though
there is no Document Type to refer to:

Richard Lander writes:

If you need character entities [other than the five built-in ones] in a DTDless file, you can
declare them in an internal subset without referencing anything other than the root
element type:'

&

$

%

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE example [
<!ENTITY mdash "---">
]>
<example>Hindsight—a wonderful thing.</example>

46

Rules for well-formedness:

</> All tags must be balanced: that is, every element which may contain character data
or sub-elements must have both the start-tag and the end-tag present (omission is
not allowed except for EMPTY elements, see below);

</> All attribute values must be in quotes. The single-quote character (the
apostrophe) may be used if the value contains a double-quote character, and vice
versa. If you need isolated quotes as data as well, you can use ' or ".
Do not under any circumstances use the automated typographic (‘curly’) inverted
commas substituted by some wordprocessors for quoting attribute values.

</> Any EMPTY elements (eg those with no end-tag like HTML’s img, hr, and br and
others) must either end with /> or they must look like non-EMPTY elements by
having a real end-tag (but no content). Example:
 would become either

 or
</br> (with nothing in between).

</> There must not be any isolated markup-start characters (< or &) in your text data.
They must be given as < and & respectively, and the sequence]]> may
only occur as the end of a CDATA marked section: if you are using it for any other
purpose it must be given as]]>.

</> Elements must nest inside each other properly (no overlapping markup, same as
for HTML);

</> DTDless well-formed documents may use attributes on any element, but the
attributes are all assumed to be of type CDATA. You cannot use ID/IDREF
attribute types for parser-checked cross-referencing in DTDless documents.

</> XML files with no DTD are considered to have <, >, ', ", and
& predefined and thus available for use. With a DTD, all character entities
used must be declared, including these five.

Rules for validity

Valid XML files are well-formed files which have a Document Type Definition (DTD)
[p.28] and which conform to it. They must already be well-formed [p.47], so all the rules
above apply.

A valid file begins with a Document Type Declaration specifying a DTD, or specifying a
W3C Schema. It may have an optional XML Declaration prepended.'

&

$

%

<?xml version="1.0"?>
<!DOCTYPE advert SYSTEM "http://www.foo.org/ad.dtd">
<advert>
<headline>...<pic/>...</headline>
<text>...</text>

</advert>

The XML Specification predefines an SGML Declaration for XML which is fixed for all
instances and is therefore hard-coded into all XML software and never specified
separately (except when using an SGML/XML switchable validator like onsgmls: see

47

below).

Tip

The SGML Declaration for XML has been removed from the text of the Specification but
is available as a separate document148). As this appears to suffer occasionally from bitrot
or neglect, there is a copy here (WebSGML TC)149 and here (Extended Naming Rules
TC)150, and a version for onsgmls here151.

The specified DTD must be accessible to the XML processor using the URI supplied in
the SYSTEM Identifier, either by being available locally (ie the user already has a copy
on disk), or by being retrievable via the network. Note that DTD specifications must
be URIs (local, relative, or absolute). Proprietary-specific filesystem references (eg
C:\dtds\my.dtd are not URIs and cannot be used: use the file:///C|/dtds/my.dtd
format instead.

It is possible (many people would say preferable) to supply a Formal Public Identifier
with the PUBLIC keyword, and use an XML Catalog to dereference it, but the
Specification mandates a SYSTEM Identifier so this must still be supplied (after the
PUBLIC identifier: no further keyword is needed):#

"

!

<!DOCTYPE advert PUBLIC
"-//Foo, Inc//DTD Advertisements//EN"
"http://www.foo.org/ad.dtd">

<advert>...</advert>

The test for validity is that a validating parser finds no errors in the file: it must
conform absolutely to the definitions and declarations in the DTD.

XML (W3C) Schemas are not usually linked directly from within an XML document
instance in the way that DTDs are: the relevant Schema (XSD file) for a document
instance is normally specified to the parser separately, either by file system reference,
or using a Target Namespace152.

D.4 Which should I use in my DTD/Schema, attributes or elements?
See http://xml.
coverpages.
org/
elementsAndAttrs.
html153

There is no single answer to this: a lot depends on what you are designing the
document type for.

Traditional editorial practice for normal text documents is to put the real text (what
would be printed) as character data content, and keep the metadata (information
about the text) in attributes, from where they can more easily be isolated for analysis
or special treatment like display in the margin or in a mouseover:

151http://www.w3.org/TR/NOTE-sgml-xml-971215
151xml-websgml.dec
151xml-enr.dec
151/xml-onsgmls.dec
152http://www.w3.org/TR/xmlschema-0/#NS

48

�
�

�
�

<l n="184"> <spara>Portia</spara>
<text>The quality of mercy is not strain’d,</text> </l>

But from the systems point of view, there is nothing wrong with storing the data the
other way round, especially where the volume of text data on each occasion is
relatively small:�
�

�
�

<line speaker="Portia" text="The
quality of mercy is not strain’d,">184</line>

A lot will depend on what you want to do with the information and which bits of it
are easiest accessed by each method. A rule of thumb for conventional text
documents is that if the markup were all stripped away, the bare text should still be
readable and usable, even if unformatted and inconvenient. For database output,
however, or other machine-generated documents like e-commerce transactions,
human reading may not be meaningful, so it is perfectly possible to have documents
where all the data is in attributes, and the document contains no character data in
content models at all. See http://xml.coverpages.org/elementsAndAttrs.html for
more information.

Mike Kay writes:

From a user: ‘[. . .] do most of you out there use element-based or attribute-based xml?
why?’

Beginners always ask this question. Those with a little experience express their
opinions passionately. Experts tell you there is no right answer.
(http://lists.xml.org/archives/xml-dev/200006/msg00293.html)

D.5 What has changed between SGML and XML?
Stricter syntax
and no options.

The main syntactic change is that EMPTY elements in DTDless documents must use
the Null End-Tag trick (eg) because without a DTD or Schema there
is no way for the parser to know not to expect an end-tag. If an element type is
declared as EMPTY in the DTD/Schema then it can use either the NET or the full
end-tag syntax (eg).

Other syntactic changes are that all attribute values must be quoted; there is no
minimisation of attributes or elements; and everything is case-sensitive. One
important addition is that multiple ATTLIST declarations are allowed, so an internal
subset can add to the attributes already declared for an element type.

The principal changes in Document Type Definitions (DTDs) are in what you can
specify. To simplify it and make it easier to write processing software, a large
number of SGML markup declaration options have been suppressed (see the list of
omitted features [p.59]). The biggest change in vocabulary management is the
introduction of W3C Schemas, which allow a level of content-type validation not
available in DTDs, and are themselves expressed in XML Document Syntax.

49

The main addition here is namespaces [p.51], which enable Schemas and documents
to distinguish element-type and attribute-type source (ownership, origin, or
application). This lets you have element types with the same name but different
meanings in the same document, eg DocBook:table and TEI:table. An extra Name
Start Character (the colon) was added in XML Names to allow this. Despite its
classification, a colon may only appear in mid-name, not at the start or the end, and
the prefix xml: is Reserved.

D.6 Can I use JavaScript, ActiveX, etc in XML files?
Not in the XML
file itself, but via a
stylesheet.This will depend on what facilities your users’ browsers implement. XML is about

describing information; scripting languages and languages for embedded
functionality are software which enables the information to be manipulated at the
user’s end, so these languages do not normally have any place in an XML file itself,
but in stylesheets like XSL and CSS where they can be added to generated HTML.

XML itself provides a way to define the markup needed to implement scripting
languages: as a neutral standard it neither encourages not discourages their use, and
does not favour one language over another, so it is possible to use XML markup to
store the program code, from where it can be retrieved by (for example) XSLT and
re-expressed in a HTML script element.

Server-side script embedding, like PHP or ASP, can be used with the relevant server to
modify the XML code on the fly, as the document is served, just as they can with
HTML. Authors should be aware, however, that embedding server-side scripting may
mean the file as stored is not valid XML: it only becomes valid when processed and
served, so care must be taken when using validating editors or other software to
handle or manage such files. A better solution may be to use an XML serving
solution like Cocoon154, AxKit155, or PropelX156.

D.7 Can I use Java to create or manage XML files?
Sure.

Yes, any programming language can be used to output data from any source in XML
format. There is a growing number of front-ends and back-ends for programming
environments and data management environments to automate this. Java is just the
most popular one at the moment.

There is a large body of middleware (APIs) written in Java and other languages for
managing data either in XML or with XML input or output. There is a suite of Java
tutorials (with source code and explanation) available at http://developerlife.com.

Note

Please do not mail the FAQ editor with questions about your Java programming bugs. Ask
one of the Java newsgroups instead.

154http://cocoon.apache.org/
155http://axkit.org/
156http://www.propylon.com/products/propelx/

50

D.8 How do I get XML into or out of my database?
Ask your database
manufacturer

Ask your database manufacturer: they all provide XML import and export modules
to connect XML applications with databases.

In some trivial cases there will be a 1:1 match between field names in the database
table and element type names in the XML Schema or DTD, but in most cases some
programming will be required to establish the desired match. This can usually be
stored as a procedure so that subsequent uses are simply commands or calls with the
relevant parameters.

Alternatively, most database systems now provide an XML dump format that lets
you export a table as-is, for example by surrounding the field values with tags called
after the fieldnames.

In less trivial, but still simple, cases, you could export by writing a report routine
that formats the output as an XML document by adding the relevant tags as literals
before and after each data value; and you could import by writing an XSLT
transformation that formatted the XML data as a load file in your database’s
preferred format.

Warning

Users from a database or computer science background should be aware that XML is not
a database management system: it is a text markup system. While there are many
similarities, some of the concepts of one are simply non-existent in the other: XML does
not possess some database-like features in the same way that databases do not possess
markup-like ones. It is a common error to believe that XML is a DBMS like Oracle or
Access and therefore possesses the same facilities. It doesn’t.

Database users should read the article Requirements for XML Document Database
Systems157 [thanks to Bart Lateur for identifying this.] Ronald Bourret also
maintains a good resource on XML and Databases discussing native XML databases
at http://www.rpbourret.com/xml/XMLAndDatabases.htm.

There is some information about the XQuery158 (XQL) Language in the note on
Searching [E.3, p.66].

D.9 What’s a namespace?
A named
DTD/Schema
fragment
identified by a URI
(URL).

157Salminen/Tompa.
158http://www.w3.org/XML/Query

51

Randall Fowle writes:

A namespace is a collection of element and attribute names identified by a Uniform
Resource Identifier reference. The reference may appear in the root element as a value
of the xmlns attribute. For example, the namespace reference for an XML document
with a root element x might appear like this:�
�

�
�

<x xmlns="http://www.company.com/company-schema">

More than one namespace may appear in a single XML document, to allow a name to be
used more than once. Each reference can declare a prefix to be used by each name, so
the previous example might appear as�
�

�
�

<x xmlns:spc="http://www.company.com/company-schema">

which would nominate the namespace for the ‘spc’ prefix:�
�

�
�

<spc:name>Mr. Big</spc:name>

James Anderson writes:

In general, note that the binding may also be effected by a default value for an attribute in
the DTD.

The reference does not need to be a physical file; it is simply a way to distinguish
between namespaces. The reference should tell a person looking at the XML document
where to find definitions of the element and attribute names using that particular
namespace. Ronald Bourret maintains the Namespace FAQ at
http://www.rpbourret.com/xml/NamespacesFAQ.htm159.

D.10 What XML software is available?
Thousands of
programs: too
many to list here.Hundreds, possibly thousands, of programs. Details are no longer listed in this FAQ

as they are now too many and are changing too rapidly to be kept up to date: see the
XML Web pages at http://xml.coverpages.org/160 and watch for announcements on
the mailing lists and newsgroups [p.7].

For a detailed guide to some examples of XML programs and the concepts behind
them, see the editor’s book Understanding SGML and XML Tools161.

Details of some XML software products are held on the XML Web pages162. For
browsers see the question on XML Browsers [p.16] and the details of the xml-dev
mailing list [p.7] for software developers. Bert Bos keeps a list of some XML
developments163 in Bison, Flex, Perl, and Python. The long-established conversion

159http://www.rpbourret.com/xml/NamespacesFAQ.htm
160http://xml.coverpages.org/
161Flynn Understanding SGML and XML Tools.
162http://xml.coverpages.org/sgml-xml.html
163http://www.w3.org/XML/notes.html

52

and application development engines like Omnimark, and SGMLC all have XML
capability and they all provide APIs.

Editors

Choosing an editor is one of the hardest tasks, because everyone has different
requirements and levels of knowledge, and what appears to be incredibly simple to one
user may seem dauntingly difficult to another. All XML editors guide the user in the
construction or maintenance of XML documents¯that’s their purpose in life.

The simplest ones just keep track of matching pointy brackets, start-tags and end-tags,
and balanced quotes, leading to a well-formed [D.3, p.47] file. More powerful editors can
read a DTD or Schema and provide menu choices for element manipulation and attribute
editing, and prevent the creation of invalid documents. The most powerful ones can also
be used for DTD or Schema development, and for XML processing.

Some are text-mode editors¯they show all the markup and the text with nothing
hidden, often using colour to distinguish markup characters. Some have a synchronous
typographic mode as well, using a stylesheet to format the information, so you appear to
be editing a typeset view of the document (incorrectly called WYSIWYG). Text-mode
editors worry some users because the pointy brackets are visible (they think it’s
programming); synchronous typographic editors worry other people because the pointy
brackets are not visible, which makes it hard to see where stuff begins and ends.

The more sophisticated editors are programmable, so the nature and effect of the
markup and the user’s actions can be limited or enhanced by scripts in JavaScript,
VBscript, Python, Tcl, Lisp, etc, even XSLT.

Do not be tempted to use a non-XML editor like Notepad, vi, or textedit for XML
documents: it will only end in tears, shame, and recriminations. Get properly-equipped.
(Microsoft’s separate XML Notepad product is usable for editing small instances, but not
for DTD or Schema development.)

There is a recent (2004) comparative paper on choosing an XML editor164 from Thijs
van den Broek which may help, and an article165 and set of links166 by Saqib Ali.

There is a page of useful links for XML users in Dutch at
http://xml.beginthier.nl/167.

Information for developers of Chinese XML systems can be found at the Chinese XML
Now! website of Academia Sinica: http://www.ascc.net/xml/168 This site includes a
FAQ and test files.

D.11 What is my information? DATA or DOCUMENT?
It depends on
what you’re using
it for.Some important distinctions exist between the major classes of XML applications and

the way in which they are used.

Two classes of applications are usually referred to as ‘document’ and ‘data’
applications, and this is reflected in the software, which is usually (but not always)
aimed at one class or the other.

Document-style applications These are like traditional publishers’ work: text and

166http://ahds.ac.uk/creating/information-papers/xml-editors/
166http://www.freesoftwaremagazine.com/free_issues/issue_03/practical_applications_xml/
166http://www.xml-dev.com/blog/#19
167http://xml.beginthier.nl/
168http://www.ascc.net/xml/

53

images in a structured environment, with fonts and formatting. In most cases
this includes Web pages as well as material destined for print like books and
magazines. The hallmark of document applications is that they make heavy
use of Mixed Content (eg subelements in text).

Data-style applications These are found mostly in e-commerce, web services, and
process or application control, with XML being used as a container for
information being stored or passed between systems, usually unformatted and
unseen by humans. Their hallmark is the absence of Mixed Content, and the
prevalence of numeric or categorical data.

There is a third major area, Web Development, whose requirements are often hybrid,
and span the features of both document and data applications because they contain
partly static descriptive text and partly dynamic data.

While in theory it would be possible to use data-class software to write a novel, or
document-class software to create invoices, it would probably be severely
suboptimal. Because of the nature of the information used by the two classes,
data-class applications tend to use Schemas [p.31], and document-class applications
tend to use DTDs [p.28], but there is a considerable degree of overlap.

The way in which XML gets used in these two classes is also divided in two: XML can
be used manually or under program control.

Manual usage This means editing and maintaining the files with an editor, from the
keyboard, seeing the information on the screen as you do so. This is suitable for
individual documents, especially in the publishing field, for web pages, and for
developers working on single instances such as sample files or web site
templates. Manual processing also implies running production programs like
formatters, converters, and database queries on a one-by-one basis, using the
keyboard and mouse in the normal way. Much of the software for manual
usage can be run from the command line, which makes it easy to use for
one-off applications and in hidden applications like Web scripts.

Programmable usage This means writing programs which call on software services
from APIs, libraries, or the network to handle XML files from inside the
program. XML files in data applications are almost never edited by hand. This
is the normal method of operating for e-commerce applications, web
automation, web services, and other process or application controls. There are
libraries and APIs for many languages, including Java, C, and C++ as well as
the usual scripting languages like Python, Perl, Tcl, Ruby, etc.

In addition to these axes, there are currently two different ways of processing XML,
memory-mapped or event-triggered, usually referred to by the names of their
original instantiations, the Document Object Model (DOM)169 and the Simple API for
XML (SAX)170 respectively. Both use a model of document engineering based on a
tree-like structure of hierarchical document markup known as a Grove171 (a
collection of trees, effectively an in-memory map of the result of parsing the
document markup). In this model, every node (item of information) from the
outermost element down through every element and attribute to each piece of

169http://www.w3.org/TR/REC-DOM-Level-1
170http://www.saxproject.org/
171http://xml.coverpages.org/topics.html#groves

54

unmarked text can be identified. For applications using Schemas, a
Post-Schema-Validation Infoset (PSVI, equivalent to a grove) is defined, which
specifies what information a parser should make available to the application.

Joe Fawcett writes:

(in article <eFIrHKtCGHA.2920@tk2msftngp13.phx.gbl>)
Briefly node is a generic term for any of the many types of XML building blocks,

including element: <myElement/>; attribute: <myElement myAttribute="myValue"/>;
and text node: my Text Node

There are also comments [Comment Declarations], Processing Instructions and the
invisible Document Node representing the root of the XML document, as well as others.

Grossly oversimplified, a DOM-based application reads an entire XML document into
memory and then provides programmable access to every node in every tree in the
grove; whereas a SAX-based application reads the XML document, and events are
triggered by the occurrence of nodes as they happen, for which rules or actions have
been programmed. (In reality it’s more complex than that, and both methods share a
lot of concepts in common.)

Both models provide an abstract API for constructing, accessing, and manipulating
XML documents. A binding of the abstract API to a particular programming
language provides a concrete API. Vendors provide concrete APIs which let you use
one or other method to query and manipulate XML documents. Both types of parser
have been implemented in many languages and under many operating systems and
interfaces. There are FAQs for both DOM172 and SAX173.

D.12 Do I have to change any of my server software to work with XML?
Make sure your
server sends XML
files as text/xmlIf you are just serving static files. the only changes needed are to make sure your

server serves up .xml, .css, .dtd, .xsl, and whatever other file types you will use as
the correct MIME content (media) types.

The details of the settings are specified in RFC 3023174. Popular server software like
Apache HTTPD knows this already.

If not, all that is needed is to edit the mime-types file (or its equivalent: as a server
operator you already know where to do this, right?) and add or edit the relevant
lines for the right media types. In some servers (eg Apache), individual content
providers or directory owners may also be able to change the MIME types for specific
file types from within their own directories by using directives in a .htaccess file.
The media types required are:

</> text/xml for XML documents which are ‘readable by casual users’;

</> application/xml for XML documents which are ‘unreadable by casual users’;

</> text/xml-external-parsed-entity for external parsed entities such as document
fragments (eg separate chapters which make up a book) subject to the

172http://www.w3.org/DOM/faq.html
173http://www.saxproject.org/faq.html
174ftp://ftp.rfc-editor.org/in-notes/rfc3023.txt

55

readability distinction of text/xml;

</> application/xml-external-parsed-entity for external parsed entities subject to
the readability distinction of application/xml;

</> application/xml-dtd for DTD files and modules, including character entity sets.

The RFC has further suggestions for the use of the +xml media type suffix for
identifying ancillary files such as XSLT (application/xslt+xml).

If you run scripts generating XHTML which you wish to be treated as XML rather
than HTML, they may need to be modified to produce the relevant Document Type
Declaration as well as the right media type if your application requires them to be
validated.

D.13 Can I still use server-side inclusions?
Yes, just make
sure the output
conforms to XMLYes, so long as what they generate ends up as part of an XML-conformant file (ie

either valid [D.3, p.47] or just well-formed [D.3, p.47]).

Server-side tag-replacer scripting languages like shtml, PHP, JSP, ASP, Zope, etc store
almost-valid files using comments, Processing Instructions, or non-XML markup,
which gets replaced at the point of service by text or XML markup (it is unclear why
some of these systems use non-HTML/XML markup). There are also some
XML-based preprocessors for formats like XVRL175 (eXtensible Value Resolution
Language) which resolve specialised references to external data and output a
normalised XML file.

D.14 Can I (and my authors) still use client-side inclusions?
Yes, just make
sure the output
conforms to XMLThe same rule applies as for server-side [p.56] inclusions, so you need to ensure that

any embedded code which gets passed to a third-party engine (eg calls to SQL, VB,
Java, etc) does not contain any characters which might be misinterpreted as XML
markup (ie no angle brackets or ampersands). Either use a CDATA marked section to
avoid your XML application parsing the embedded code, or use the standard <,
and & character entity references instead.

D.15 I have to do an overview of XML for my manager/client/investor/advisor.
What should I mention?

Non-proprietary
multi-purpose
flexible markup

175http://www.xvrl.org

56

Tad McClellan writes:

</> XML is not a markup language. XML is a ‘metalanguage’, that is, it’s a language that
lets you define your own markup languages (see definition [p.3]).

</> XML is a markup language [two (seemingly) contradictory statements one after
another is an attention-getting device that I’m fond of], not a programming
language. XML is data: is does not ‘do’ anything, it has things done to it.

</> XML is non-proprietary: your data cannot be held hostage by someone else.

</> XML allows multi-purposing of your data.

</> Well-designed XML applications most often separate ‘content’ from ‘presentation’.
You should describe what something is rather what something looks like (the
exception being numerical or categorical data content which never gets presented
to humans).

Saying ‘the data is in XML’ is a relatively useless statement, similar to saying ‘the
book is in a natural language’. To be useful, the former needs to specify ‘we have
used XML to define our own markup language’ (and say what it is), similar to
specifying ‘the book is in French’.

A classic example of multipurposing [p.57] and separation [p.57] that I often use is a
pharmaceutical company. They have a large base of data on a particular drug that
they need to publish as:

</> reports to the FDA;

</> drug information for publishers of drug directories/catalogs;

</> ‘prescribe me!’ brochures to send to doctors;

</> little pieces of paper to tuck into the boxes;

</> labels on the bottles;

</> two pages of fine print to follow their ad in Reader’s Digest;

</> instructions to the patient that the local pharmacist prints out;

</> etc.

Without separation of content and presentation, they need to maintain essentially
identical information in 20 places. If they miss a place, people die, lawyers get rich,
and the drug company gets poor. With XML (or SGML), they maintain one set of
carefully validated information, and write 20 programs to extract and format it for
each application. The same 20 programs can now be applied to all the hundreds of
drugs that they sell.

In the Web development area, the biggest thing that XML offers is fixing what is
wrong with HTML:

</> browsers allow non-compliant HTML to be presented;

</> HTML is restricted to a single set of markup (‘tagset’).

If you let broken HTML work (be presented), then there is no motivation to fix it.
Web pages are therefore tag soup that are useless for further processing. XML

57

specifies that processing must not continue if the XML is non-compliant, so you keep
working at it until it complies. This is more work up front, but the result is not a
dead-end.

If you wanted to mark up the names of things: people, places, companies, etc in
HTML, you don’t have many choices that allow you to distinguish among them.
XML allows you to name things as what they are:�
�

�
�

<person>Charles Goldfarb</person> worked at <company>IBM</company>

gives you a flexibility that you don’t have with HTML:�
�

�
�

Charles Goldfarb worked at IBM

With XML you don’t have to shoe-horn your data into markup that restricts your
options.

D.16 Is there a conformance test suite for XML processors?
Yes, see
http://www.
oasis-open.
org/
committees/
xmltest/
testsuite.
htm176

James Clark has a collection of test cases for testing XML parsers at
http://www.jclark.com/xml/177 which includes a conformance test against ‘canonical
XML’.

Mary Brady writes:

A much larger and more comprehensive suite is the NIST/OASIS Conformance Test Suite,
available from
http://www.oasis-open.org/committees/xmltest/testsuite.htm178, which
contains contributions from James Clark, OASIS and NIST, Sun, and Fuji Xerox.

Carmelo Montanez writes:

NIST has developed a number of XSLT/XPath tests, which will be part of the official
OASIS XSLT/XPath suite (not yet released). These tests are available from our web site
at http://xw2k.sdct.itl.nist.gov/xml/index.html179 (click on ‘XSL Testing’).
The expected output may be slightly different from one implementation to another. The
OASIS XSLT technical committee has a solution for that problem, however our tests do
not yet implement such solution. Please forward any comments to carmelo@nist.gov.

177http://www.jclark.com/xml/
178http://www.oasis-open.org/committees/xmltest/testsuite.htm
179http://xw2k.sdct.itl.nist.gov/xml/index.html
180http://www.windspun.com/unicode-test/unicode.xml

58

Jon Noring writes:

For those who are interested, I took the current and complete Unicode 3.0 ‘cast’ of
characters and their hex codes, and created a simple XML document of it to test XML
browsers for Unicode conformity. It is not finished yet¯I need to add comments and to
fix the display of rtl characters (ie Hebrew, Arabic). It is found at:
http://www.windspun.com/unicode-test/unicode.xml180. It is quite large, almost
900K in size, so be prepared. IE5 renders many of the characters in this XML
document¯and for the ones it does render it appears to do so correctly. I look forward to
when Opera will do likewise. I haven’t tested the current version of Mozilla/Netscape for
Unicode conformity.

D.17 I’ve already got SGML DTDs: how do I convert them for use with XML?
Edit by hand or
use software like
Near+Far
Designer.

There are numerous projects to convert common or popular SGML DTDs to XML
format (for example, both the TEI DTD181 (Lite and full versions) and the DocBook
DTD182 are available in both SGML and XML, in Schema and DTD formats).

181http://www.tei-c.org/
182http://www.docbook.org/

59

Seán McGrath writes:

To convert SGML DTDs to XML:

1. No equivalent of the SGML Declaration. So keywords, character set etc are
essentially fixed;

2. Tag minimisation is not allowed, so <!ELEMENT x - O (A,B)> becomes
<!ELEMENT X (A,B)> and <!ELEMENT x - O EMPTY> becomes
<!ELEMENT X EMPTY>;

3. #PCDATA must only occur at the extreme left (ie first) in an OR model, eg
<!ELEMENT x - - (A|B|#PCDATA|C)> (in SGML) becomes
<!ELEMENT x (#PCDATA|A|B|C)*>, and <!ELEMENT x (A,#PCDATA)> is illegal;

4. No CDATA, RCDATA elements [declared content];

5. Some SGML attribute types are not allowed in XML eg NUTOKEN;

6. Some SGML attribute defaults are not allowed in XML eg CONREF and
CURRENT;

7. Comments cannot be inline to declarations like
<!ELEMENT x - - (A,B) -- an SGML comment in a declaration -->;

8. A whole bunch of SGML optional features are not present in XML: all forms of tag
minimisation (OMITTAG, DATATAG, SHORTREF, etc); Link Process Definitions;
Multiple DTDs per document; and many more: see
http://www.w3.org/TR/NOTE-sgml-xml-971215 for the list of bits of SGML
that were removed for XML;

9. And [nearly] last but not least, no CONCUR!

10. There are some important differences between the internal and external subset
portion of a DTD in XML: Marked Sections can only occur in the external subset;
and Parameter Entities must be used to replace entire declarations in the internal
subset portion of a DTD, eg the following is invalid XML:'

&

$

%

<!DOCTYPE x [
<!ENTITY % modelx "(A|B)*">
<!ELEMENT x %modelx;>
]>
<x></x>

For more information, see XML by Example: Building E-Commerce Applicationsa.

aMcGrath.

D.18 How do I include one DTD (or fragment) in another?
Use a parameter
entity, same as for
SGMLThis works exactly the same as for SGML. First you declare the entity you want to

include, and then you reference it by name as a parameter entity:

60

�

�

�

�
<!ENTITY % mylists SYSTEM "dtds/listfrag.ent">
...
%mylists;

Such declarations traditionally go all together towards the top of the main DTD file,
where they can be managed and maintained, but this is not essential so long as they
are declared before they are used. You use Parameter Entity Syntax for this (the
percent sign) because the file is to be included at DTD compile time, not when the
document instance itself is parsed.

Note that a URI is compulsory in XML as the System Identifier for all external file
references: standard rules for dereferencing URIs apply (assume the same method,
server, and directory as the containing document). A Formal Public Identifier can also
be used, following the same rules as elsewhere [D.3, p.47].

D.19 How can I include a conditional statement in my XML?
You can’t, as such:
XML isn’t a
programming
language.

You can’t as such: XML isn’t a programming language [p.18], so you can’t say
things like�
�

�
�

<foo if{DB}="A">bar</foo>

But you can have conditional criteria in a Schema, DTD, or a processor, and some
DTDs provide attributes for conditional processing.

If you need to make an element optional, based on some internal or external criteria,
you can do so in a Schema. DTDs have no internal referential mechanism, so it isn’t
possible to express this kind of conditionality in a DTD at the individual element level.

It is possible to express presence-or-absence conditionality in a DTD for the whole
document, by using Parameter Entities as Boolean switches to include or ignore
certain sections of the DTD based on settings either hardwired in the DTD or supplied
in the internal subset. Both the TEI and Docbook DTDs have used this mechanism to
implement modularity.

Alternatively you can make the element entirely optional in the DTD or Schema, and
provide code in your processing software that checks for its presence or absence. This
defers the checking until the processing stage: one of the reasons for Schemas is to
provide this kind of checking at the time of document creation or editing.

In processing languages such as XSLT, there are constructs for conditional processing,
both for simple IFs and for exclusive case-by-case choices:

61

'

&

$

%

<xsl:if test="@foo=’bar’">
<xsl:text>Hello, world!</xsl:text>

</xsl:if>

<xsl:choose>
<xsl:when test="$type=1">
<xsl:apply-templates select="//*[@class=’special’]"/>

</xsl:when>
<xsl:when test="$type=2">
<xsl:apply-templates select="/foo/bar"/>

</xsl:when>
<xsl:otherwise>
<xsl:apply-templates/>

</xsl:otherwise>
</xsl:choose>

DocBook and many other DTDs and Schemas provide attributes on some elements
for the specification of effectivities, saying which parts of the document apply in
which circumstances. Processing software can then isolate these and process them
accordingly.

D.20 What’s the story on XML and EDI?
Getting there: still
needs more work
and agreement.Electronic Data Interchange has been used in e-commerce for many years to exchange

documents between commercial partners to a transaction. It requires special
proprietary software and is prohibitively expensive to implement for small and
medium-sized enterprises. There are moves to enable EDI documents to travel inside
XML, as well as proposals to replace the existing EDI formats with XML ones. There
are guideline documents at http://www.eccnet.com/xmledi/guidelines-styled.xml
and http://www.geocities.com/WallStreet/Floor/5815/guide.htm.

Probably the biggest effect on EDI is the rise of standardisation attempts for XML
business documents and transactions. The standard jointly sponsored by OASIS and
United Nations/CEFACT is ebXML183 (Electronic Business XML) which provides
Schemas for the common commercial transaction document types. Normal office
documents (letters, reports, spreadsheets, etc) are already being done using the
materials under the charge of the OASIS Open Office XML Formats TC, detailed above
[p.19]. Other standards such as OAGI184 and RosettaNet185 are undergoing
interoperability testing with ebXML.

In addition to full standards, there are many sets of shims, interoperability tools, and
component libraries such XML Common Business Library (xCBL186).

183http://www.ebxml.org/
184http://www.openapplications.org
185http://www.rosettanet.org
186http://www.xcbl.org/

62

E Appendices

E.1 References
There is a much
larger XML and
SGML
bibliography at
http://xml.
coverpages.
org/biblio.
html.

This list covers only documents directly referenced in this FAQ.

Bray, Tim et al.: Extensible Markup Language (XML) 1.0. Boston: W3C, 4 February
2004 – Technical report 〈URL: \url{http://www.w3.org/TR/REC-xml/}〉

DuCharme, Bob: XML: The Annotated Specification. Upper Saddle River, NJ:
Prentice Hall PTR, 1999 〈URL: \url{http://www.snee.com/bob/xmlann}〉, ISBN
0–13–082676–6

Flynn, Peter: Understanding SGML and XML Tools. Boston, MA: Kluwer, 1998
〈URL: \url{http://www.amazon.com/exec/obidos/tg/detail/-/0792381696/qid%
=1128202814/sr=1-1/ref=sr_1_1/102-0476289-3244914?v=glance&s=books}〉, ISBN
0–7923–8169–6

Flynn, Peter: Making more use of markup. In SGML’95. Boston, MA, December
1995 〈URL: \url{http://imbolc.ucc.ie/~pflynn/articles/moreuse.html}〉 158˘167

Maler, Eve/el Andaloussi, Jeanne: Developing SGML DTDs: From Text to Model
to Markup. Upper Saddle River, NJ: Prentice Hall PTR, 1995 〈URL: \url{http:
//www.amazon.com/exec/obidos/tg/detail/-/0133098818/qid=1%104447963/sr=8-1/
ref=sr_8_xs_ap_i1_xgl14/002-9386245-9385639?v=glance&s=books&%n=507846}〉,
ISBN 0133098818

McGrath, Seán: XML by Example: Building E-Commerce Applications. Upper
Saddle River, NJ: Prentice Hall PTR, 1998 〈URL: \url{http:
//www.amazon.com/exec/obidos/tg/detail/-/0139601627/q%id=1104449400/sr=8-1/
ref=sr_8_xs_ap_i1_xgl14/002-9386245-9385639?v=glance&s=bo%oks&n=507846}〉,
ISBN 0139601627

Pawson, Dave: XSL-FO: Making XML Look Good in Print. Sebastopol, CA: O’Reilly,
2002 〈URL: \url{http://www.oreilly.com/catalog/xslfo/}〉, ISBN 0–596–00355–2

Salminen, Airi/Tompa, Frank: Requirements for XML Document Database
Systems. In ACM Symposium on Document Engineering. Atlanta, GA, November
2001 〈URL:
\url{http://db.uwaterloo.ca/~fwtompa/.papers/xmldb-desiderata.pdf}〉

Sperberg-McQueen, Michael/Burnard, Lou: Gentle Introduction to XML. Oxford,
Providence, Charlottesville, Bergen: Text Encoding Initiative Consortium, 2002
〈URL: \url{http://www.tei-c.org/release/doc/tei-p5-doc/en/html/SG.html}〉

Truss, Lynne: Eats, Shoots & Leaves: The Zero-Tolerance Approach to Punctuation.
London: Profile Books, 2003 〈URL:
\url{http://www.amazon.com/exec/obidos/tg/detail/-/1592400876/qid=1104%
449308/sr=8-1/ref=pd_csp_1/002-9386245-9385639?v=glance&s=books&n=507846}〉,
ISBN 1–86197–612–7

63

E.2 How far are we going?
To infinity and
beyond!

Running a search facility on this FAQ has produced some interesting results from the
notifications of both matches and non-matches. Sex187 has dropped to 10th place.

</> The most frequent request (5individual characters, either as character entity
names or as numeric values, or one of the markup characters (< or &).

</> In recent months the second largest category has stabilised as the word dtd
(3given the abuse so widespread).

</> Fourth equal at 1of which is dealt with in detail here as they have their own
FAQs.

The entertaining bits are deep in the tail, like the user from Broomfield, CO, who
typed in ‘How can I analyze a telephone to understand it better?’ (taking it to pieces
is probably a start); the one from the Phillipines who wanted to know how to
‘describe the five fundamental interactions between X-rays or Gamma rays with
matter’ (try DS9); the one from Culver City, CA, who asked ‘how are echinodermata
organisms different from lower invertebrates?’ (like I care?); and the one from
Lexington, KY, who asked ‘How do I add two text fields?’ (got me there, d00d, how
do you multiply a lettuce and a cucumber?).'

&

$

%

Date: Fri, 09 Jul 1999 14:26:17 -0500 (EST)
From: The Internet Oracle <oracle@cs.indiana.edu>
Subject: The Oracle replies!
To: <address-removed>
X-Planation: X-Face can be viewed with ftp.cs.indiana.edu:/pub/faces.

The Internet Oracle has pondered your question
deeply. Your question was:

> Oh Oracle most wise, all-seeing and all-knowing,
> in thy wisdom grant me a response to my request:
>
> Is XML really going to cut the mustard?

And in response, thus spake the Oracle:
Well, since XML is a subset of SGML, and SGML
has a <cut mustard> tag, I’d have to say yes.

You owe the Oracle a B1FF parser.

For the SGML-curious among our readers, that’s:�

�

�

�
<!element cut - o empty>
<!attlist cut mustard (mustard) #required>
<!-- :-) -->

187http://dylan.tweney.com/prophet/981019prophet.htm

64

E.3 Not the XML FAQ
Infrequently
Asked Questions

This is a list of topics that people have asked about or searched for in relation to the
XML FAQ, which are not necessarily directly connected to XML and its technology,
nor frequently asked questions. It also includes some fall-back definitions for the
benefit of users who have come to XML by different routes and may not have been
exposed to ay document publishing background.

Readers may also want to look at Joe English’s ‘Not the SGML FAQ’ at
http://www.flightlab.com/~joe/sgml/faq-not.txt.

XLS Microsoft proprietary spreadsheet file format written by their Excel spreadsheet
program. XLS files are not XML files, but modern versions of Excel save their
data in Microsoft’s own Office XML format (OOXML).

Do not confuse XLS with XSL (see How do I control formatting and appearance?
[p.14]).

XML This is the XML FAQ. Everything in it is about XML. For introductory
explanations, see Basics: general information about XML [p.1].

Colour XML is designed for identifying information about the structure and content
of text documents, rather than their appearance. Although it is perfectly
possible to identify and store information about appearances, this information
is usually kept in a CSS or XSL stylesheet. If you need to record information
about the formatting or appearance of an existing document, there are features
in the TEI188 Schema/DTD for doing so.

Editing To edit (open) an XML file you should use an XML editor [D.10, p.53]. It is
possible to open an XML file using any standard plaintext editor or even a
wordprocessor, but be aware that they may try to reformat the file incorrectly
because they don’t understand XML.

Games I am not aware of any computer games written using XML yet, although
XML is used in some of the internal control and configuration files used by
games.

SOAP A W3C standard189 for the ‘definition of the XML-based information which
can be used for exchanging structured and typed information between peers in
a decentralized, distributed environment’. Most commonly used in Web
Services for message-passing.

Originally the Simple Object Access Protocol190, the acronym is now undefined,
or expressed as the Service-Oriented Access Protocol.

Serving XML See Do I have to change any of my server software to work with XML?
[p.55]

Line breaks XML files can be created using any of the three standard newline
representations: CR (Mac), LF (Unix), or CR/LF (Windows). Use of anything else

188http://www.tei-c.org/
189http://www.w3.org/TR/soap/
190http://xml.coverpages.org/soap.html

65

may lead to undefined behaviour (so old DOS editors that use LF/CR may create
unusable files).

Line-breaking in your output is governed by your rendering engine (eg a
browser, a typesetter, etc). Your DTD or Schema may define special elements or
entities to be used on rare occasions when a forced linebreak is required, but
this is not normally something done in XML (exception: reconstruction of
historical documents using the TEI).

XML Protocol There is a Working Group for Web Services at the W3C, and part of
their remit is to work on an XML Protocol. See
http://www.w3.org/2000/xp/Group/ for details.

Javascript ECMAscript (to give it its real name) has nothing to do with the Java
language. It’s designed to run inside browser windows, navigating or acting on
the markup of a page to create dynamic content, validate forms, or instantiate
objects in ways that are not possible with static HTML. It is also designed so
that it cannot write to the user’s local filesystem, for obvious security reasons,
so it cannot easily be used to create XML files locally, although there are some
back-doors in Microsoft software which allow modified pages to be saved to
disk.

TMX TMX191 is a standard method to describe translation memory data that is
being exchanged among tools and/or translation vendors for human-language
translation (part of the OSCAR project from LISA).

XUL The XML User Interface Language192, designed for specifying the user interface
in the Mozilla browser.

XMLHTTP Feature implemented in MSXML and elsewhere to allow the retrieval of
web pages, binary data, or scripted responses under program control (like using
curl193, wget194 or dog195 in a shell script). Used asynchronously in AJaX
[p.72] applications to pre-fetch data, saving time to make it appear that an
application is operating locally.

White-space See How does XML handle white-space in my documents? [p.21].

Searching You can search individual XML files on a sequential, stand-alone,
unindexed command-line basis using programs such as lxgrep196 or lxprintf197,
parts of the LTXML2198 toolkit. Many editors include a search facility as well

XSLT [p.14] allows a limited search facility simply by using functions like
contains, starts-with, and ends-with. XSLT2 adds Regular Expressions.
XQuery199 is a fully-fledged search language for XML.

191http://www.lisa.org/tmx/tmx.htm
192http://www.mozilla.org/projects/xul/
193http://curl.haxx.se/
194http://www.gnu.org/software/wget/wget.html
195http://packages.debian.org/lenny/dog
196http://www.cogsci.ed.ac.uk/~richard/ltxml2/lxgrep.html
197http://www.cogsci.ed.ac.uk/~richard/ltxml2/lxprintf.html
198http://www.ltg.ed.ac.uk/software/ltxml2
199http://www.w3.org/TR/xquery/

66

The Saxon XSLT processor comes with an implementation of XQuery200 (see
also the XQL FAQ201), which can accept queries either from the command line
or from a file. Saxon can also use a control file to specify groups of XML files to
be searched together.

For indexed searching (for speed) you need an XQuery search tool that
implements an indexing engine which reads and understands markup. These
are usually implemented as part of a native XML database system such as
eXist202 (and many others), which run either stand-alone or in parallel with an
XML server like Cocoon203.

Traditional relational databases (MySQL, Oracle, etc) tend to store XML as
undistinguished strings or BLOBs, using bolt-on XML backends to handle the
markup on import and export. Native XML databases have the XML handling
built-in, and can be configured for granularity, to store at a specific element
level, making markup-sensitive searching much more effective.

asp.net ASP (Active Server Pages) is a Microsoft language for serving dynamic web
pages, similar in concept to JSP, PHP, and others. In itself, ASP has nothing
inherently to do with XML, although like any server-side system, it can be used
for serving XML just as well as an other type of file.

.NET itself is an application platform and methodology for web services
development on Microsoft servers. Most web services are predicated on XML as
the common carrier of inter-business messaging, so .NET has a significant XML
component.

Marc Hadley writes:

There are many alternatives to ASP, most of which use a similar page based approach.
Java based alternatives include Java Server Pages204 (JSP), Java Server Faces205 (JSF) and
Cocoon206 (which includes eXtensible Server Pages207¯XSP). Popular scripting language
alternatives include Zope208 (Python) and Rails209 (Ruby) [all of which have extensive
XML support.¯Ed.]

Disadvantages XML markup has a few disadvantages:

</> It can be verbose unless element and attribute names are chosen with care.
In large documents the markup overhead need not be large, but in short
messages it can be significantly more than the actual data, especially when
the element or attribute names are concocted by machine.

</> Overlapping markup is not permitted (an element cannot start inside one
element and end inside another): element markup must nest hierarchically.

200http://www.w3.org/XML/Query
201http://www.ibiblio.org/xql/
202http://exist.sourceforge.net/
203http://cocoon.apache.org/
209http://java.sun.com/products/jsp/
209http://java.sun.com/j2ee/javaserverfaces/
209http://cocoon.apache.org/
209http://cocoon.apache.org/2.1/userdocs/xsp/logicsheet.html
209http://www.zope.org/
209http://www.rubyonrails.org/

67

</> Most applications require the document to be loaded to memory in its
entirety before it can be parsed and processed. This can become a problem
for truly huge documents (larger than the addressable memory of a
computer system). Arguably, XML is the perhaps wrong tool to use for
files this size, but there are streaming systems which will enable them to
be processed.

</> Some of the software is truly mediocre.

Rendering Using XSLT or XSL:FO transformation (or other similar conversion
systems), information marked up in XML can be rendered to almost any target:
HTML, PDF, audio, Braille, and almost any plain-text format (eg). How it
appears (or sounds) is the result of using stylesheets or other transformation
logic activated by the markup.

Floating-point You cannot declare character data content or attribute values as
floating-point (or many other data types) using DTDs. To do that you need to
use a Schema.

Enumeration To count the number of occurrences of a node in an XML document,
you can use the count function in XSL[T], eg�
�

�
�

<xsl:value-of select="count(//chapter)"/>

To apply a counter to a repetitive element type, use the xsl:number element, eg�
�

�
�

<xsl:number select="appendix" level="any" format="A"/>

For more on XSLT, see How do I control formatting and appearance? [p.14].

XLL The XML Linking Language comprises the XLink specification and the XPointer
specification. For details, see the XML Linking Working Group210 at the W3C.

Special characters XML has only two special markup characters in normal
documents:

</> The open angle bracket or less-than sign (<) which begins a start-tag or
end-tag like <report> or </table>;

</> The ampersand character (&) which starts an entity reference like á
for á or § for Ÿ.

Contrary to popular opinion, the closing angle bracket or greater-than (>) and
the semicolon (;) are not special characters in normal text: they only acquire
their temporary special meaning once one of the two markup characters has
been encountered.

In DTDs, the percent sign (%) has a special meaning in entity declarations: it
defines the entity as a parameter entity, meaning that it can only be used inside

210http://www.w3.org/XML/Linking.html

68

the DTD, not in a document text, and only for data substitution (a kind of
simple macro).

The exclamation mark (!) acquires a special meaning immediately after a
less-than sign: when followed by one of the declaration keywords in a DTD it
signals the start of Declaration; when followed by two dashes it signals the
start of a comment (ended by another two dashes and a greater-than sign.

Loops To process some XML repetitively, you need to use a processing language
which allows looping or the cyclical handling of a defined set of nodes. For
example in XSLT, to output all chapter titles to make a table of contents (ie out
of natural document position), you could say:'

&

$

%

<xsl:for-each select="//chapter">

<xsl:value-of select="title"/>

</xsl:for-each>

UML The Unified Modeling Language211 has nothing to do with XML, although
there are many points of contact, and some software is available212 to express
some UML structures in XML for the purposes of inter-process messaging.

Multimedia The Synchronized Multimedia Integration Language213 (SMIL) provides
an XML vocabulary for simple authoring of interactive audiovisual
presentations. SMIL is typically used for rich media/multimedia presentations
which integrate streaming audio and video with images, text or any other
media type.

Well-formed See Rules for well-formedness: [D.3, p.47].

SML The Spacecraft Markup Language214 is an application of XML.

The Standard ML215 programming language is not.

Did you mean SGML [p.2]?

Sorting To sort a repetitive set of XML elements in XSL[T], use the xsl:sort element,
eg'

&

$

%

<xsl:for-each select="//acronym">
<xsl:sort select="@abbrev"/>
<xsl:value-of select="@abbrev"/>
<xsl:text>: </xsl:text>
<xsl:apply-templates/>

</xsl:for-each>

211http://www.uml.org/
212http://xml.coverpages.org/ni2001-10-10-a.html
213http://www.w3.org/AudioVideo/
214

215http://www.smlnj.org/sml97.html

69

WAP The Wireless Application Protocol (WAP) is now handled by the Open Mobile
Alliance216.

GTT The Gnome Time Tracker is a component of the Gnome interface used
extensively on Linux systems. Part of its internal data is configured in XML.

BPEL The Business Process Execution Language217 is an XML-based specification of
the steps required for a cooperative business process to take place between
consenting servers.

Idempotency A term used in the HTTP specification218 to describe the
side-effect-free nature of repeated requests for a resource.

RSS The Really Simple Syndication219 format was designed to allow news sites to
process updates by machine, and it evolved into a semi-standard format for
blogs and other frequently-changing sites to notify the world of changes.
Unfortunately it was never properly defined, and has multiple incompatible and
undocumented versions. It was about to be superseded by a vastly better
language called Atom, but Microsoft have recently announced their support for
RSS, so it looks like we may be stuck with a lemon for years to come.

Newsreaders (RSS readers) are available for all platforms, both standalone and
as browser plugins. Do not confuse these with programs of the same
description designed to provide access to the Usenet News service, which is a
different thing entirely (and which you will need to read comp.text.xml220).

Variables XML doesn’t have variables or parameters, nor does it have fields or
records. These are all terms from programming and database technology, and
do not have exact equivalents in XML.

XML identifies your information with elements and attributes.

Environment variables XML is a markup language, not a programming language,
so it has no concept of environment variables. However, if you are using a
DTD, and accessing your XML files under program control (eg in a script rather
than by hand) it is possible to modify the value of declared attributes or entities
(eg with a stream-editor like sed) before the file is opened, and thereby to pass
values from the external environment into the document. A similar approach
would be possible with Schemas.

Entities An entity is a unit of storage in XML. It can be as small as a character or as
large as a whole document. Four types of entity are declarable:

General entities which can be like string-replacement macros:

�
�

�
�

<!ENTITY IBM "International Business Machines">

216http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html
217http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
218http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
219http://en.wikipedia.org/wiki/RSS_(protocol)
220news:comp.text.xml

70

These can be used for shorthand data entry or to guarantee uniform
spelling like &IBM; and they get replaced when the file is parsed.They can
also represent external files:

�
�

�
�

<!ENTITY chap5 SYSTEM "chapter5.xml">

which can be used as a file-inclusion mechanism at the point where you
insert &chap5;. External general file entities must not contain the XML
Declaration or any Document Type Declaration.

Document entities These are like external general file entities except that they
specify the type of data they contain, using a declared Notation, so that the
parser and application can decide how to handle them (eg include them or
hand them to another program specific to their type of medium):

'

&

$

%

<!ELEMENT link (#PCDATA)>
<!ATTLIST link to ENTITY #REQUIRED>
...
<!NOTATION PDF PUBLIC

"-//Adobe//NOTATION Portable Document Format//EN//PDF"
"http://partners.adobe.com/public/developer/pdf/index_reference.html">

<!ENTITY pricelist SYSTEM "/sales/pricelist.pdf" NDATA PDF>
...
<para>Please refer to our <link to="pricelist">current

price list</link>.</para>

This provides an extremely robust method of defining an external entity
once and allowing it to be referenced multiple times (if the external
filename changes, you only have to update the entity declaration).

Character entities like á to represent characters that users without the
required keyboard features may want to enter like á;

Parameter Entities are like General Entities but can only be referenced within
a DTD. They are used for control of content models, inclusion or exclusion
of declarations, and modification of modular constructs:

�
�

�
�

<!ENTITY % local.qandaset.mix "|bibliodiv">

(to use an example from the DTD for this FAQ) where the mix of element
types in the content model for qandaset is specified by the entities
qandaset.mix (defined by DocBook) and by local.qandaset.mix (definable
by the user [me]) so that the DTD can be tweaked without having to be
edited.

General entity names, including XML document entities and character entities,
always start with an ampersand (&) and end with a semicolon (;), and can be

71

used anywhere in your document. Parameter entities can only be used in a
DTD: they start with a percent sign (%) and end with a semicolon.

AJaX Asynchronous HTTP, Javascript, and XML. A technique for improving the
interactivity of web pages whereby in-browser scripting detects user activity
and pre-fetches the required data asynchronously from an XML-backed
data-store, instead of waiting until the user clicks on a link and requesting it
synchronously from the server.

Pipelining Technique for reducing complex sequential and parallel processing
requirements to a set of components which can be completed under program
control. The term is taken from the Unix facility for redirecting the output of
one command into the input of another (called a pipe), in effect creating a chain
or pipeline through which data passes on its way from source to result.

The W3C has a Note221 pending submission on an XML Pipeline Definition
Language which could be used to define a pipeline in a portable,
vendor-independent manner.

Attributes These are items of metadata or metainformation (information about
information) which can be added to the start-tag of an element. Usually
attributes are a way of refining the meaning, function, or some other quality of
an element. They take the form of a name and a quoted value joined by an
equals sign, eg�
�

�
�

<part id="B22" catnum="51N1573R" level="App">Left-handed Screwdriver</part>

Attribute names must follow the XML rules for Names (see the spec [p.44]). If
your application does not use a DTD or Schema, the attribute values are treated
as plain text (CDATA) and cannot have any special meaning to XML (with the
exception of xml:id and xml:lang, see below). In a DTD or Schema, attributes
can be assigned datatypes, the most common being (using DTD terminology for
simplicity):

ID or IDREF ID attribute values must be XML Names (no spaces; must begin
with a letter) and they must be unique in a document. An IDREF attribute
value can occur any number of times, but it must be the value of an ID
attribute in the same document. ID and IDREF are most frequently used
for cross-referencing within documents.Note that an ID attribute can have
any name: it doesn’t have to be called ID, although it frequently is.
Conversely¯as a matter of best practice¯you should never use the name ID
(id) for an attribute which is not of type ID, simply because it’s confusing.
If your application has unique identity values that the community calls
IDs, and which are not XML Names, either name the attribute something
different (eg Product-ID) or document heavily that the value is not an XML
ID.There is a W3C Recommendation222 that document type designers
should use the attribute name xml:id, and this can be interpreted by parsers

221http://www.w3.org/TR/2002/NOTE-xml-pipeline-20020228/
222http://www.w3.org/TR/xml-id/

72

as being a unique ID without the need for the document to use a DTD or
Schema.

CDATA Just text.

Token List The attribute must have one of a restricted number of values
(specified in parentheses in the declaration, separated by vertical bars), eg

�

�

�

�
<!ATTLIST part level (App|Jny|Mst) #REQUIRED>
<!ATTLIST Q.27 resp (Yes|No) "Yes">

In the first example there is no default, and a value is compulsory. In the
second, Yes is the default value (if the attribute is omitted, the parser will
take the default value from the declaration).

ENTITY The attribute value must be a declared Entity [p.70].

NMTOKEN An XML Name Token is like an ID value (no spaces) but it can begin
with a non-letter (eg a digit or punctuation).

Special attributes In addition to xml:id (mentioned above), there are two
others allowed by the XML Specification:

xml:space to signal an intention that in that element, white space should
be preserved by applications;

xml:lang to specify the language used in the contents and attribute values
of any element.

See sections 2.10 and 2.12 of the Spec for more detail.

In Schemas a much greater range of datatypes is available than in DTDs, and
complex validation criteria can be attached to each.

Attributes in a DTD can be declared as REQUIRED (compulsory), IMPLIED
(optional), or FIXED (predefined and invariable).

There is not intended to be any limit on the length of an attribute value, but
you should check that your processing software can handle unusual data
volumes if you intend to use very large lengths.

URI parsing errors See the para above [8, p.24].

Tables You can define tables any way you wish in XML (see Does XML let me make up
my own tags? [p.29]) but there are a few existing table models which have
become so widely-used (and supported by software) that it would need a very
compelling reason to invent something new. There are more details in
Understanding SGML and XML Tools223 Ÿ2.3.7.

HTML HTML tables were invented by Mosaic (now Netscape) and first
appeared in the HTML2 DTD. In all versions of HTML and XHTML they
define a very simple but practical model, with very few refinements,
suitable for web use and for rudimentary printing. Their chief advantage

223Flynn Understanding SGML and XML Tools.

73

is that in a browser the cell heights and widths (and thus the column
widths) expand or contract automatically to accommodate the amount of
text contained in them. Most other table models assume the widths of the
columns and the height of the cells will be specified in advance (which you
can do in HTML but this is rarely used).

CALS Computer-Aided Logistics and Support (and several other acronyms over
the years) was (is) part of the US military project to ensure a consistent
markup for all documentation, originally in SGML, now in XML. As part
of this activity the CALS table model has become the most widely-used in
technical documentation, especially for Interactive Electronic Technical
Manuals (IETMs), with extensive support in all the major editors, and it is
the default table model in the DocBook DTD and Schema. The CALS
definitions are very powerful but quite complex, and can handle virtually
all requirements for spanning, ruling, and aligning.

SASOUT This model has been used extensively in the social sciences and
elsewhere for defining tables based on the semantics of the data, rather
than the appearance. At one time they were an alternative in DocBook
(enabled by a simple parameter entity switch).

TEI The TEI model is designed to allow the encoder to represent existing tables
being transcribed from historical, literary, or archive material, rather than
for the generation of new data. The markup is at the same level of
simplicity as the HTML model, but it is designed to allow the inclusion of
the much denser markup and metadata needed in research texts.

The model is not of direct concern to the XML user except insofar as is a
common target for transformations from XML using XSLT in order to
create PDFs. Like CALS, tables can handle almost any formatting, but the
default alignments assume that each column format is defined beforehand,
and that each cell will occupy one line of data: an additional package
(array) is needed to handle multi-line cells in the way that other models do.

In XML, it is not necessary to use tables to mark up lists as is often done in
wordprocessors, because the processing facilities of languages like XSLT allow
you to transform the document to use non-tabular methods (like HTML’s divs).
Table markup should therefore be confined to real tables (data arranged in rows
and columns) and not abused simply because you want something displayed on
a level with something else: it is better to pick markup which is designed to do
the job properly rather than to distort existing facilities.

Wordprocessor users are usually unaware that many structures that they
currently use wordprocessor tables for are in fact segmented lists, which
wordprocessors are incapable of handling correctly. One of the major reasons
for doing it properly is that the data can then be reprocessed to make sense
when read in the natural order.

Byte Order Mark A two-byte signature (0xFEFF, defined in Unicode and ISO 10646)
which must be prepended to the XML document when using the the UCS-2
encoding, in order to allow processors to differentiate between the UCS-2 and
UTF-8 encodings.

74

Patents, Copyright, and Intellectual Property I’m not a lawyer, and this is not
legal advice. If you’re worried, see a psychiatrist first ©

Since the USA (and, increasingly, elsewhere) stopped sanity-checking patent
applications, pretty much anyone can patent anything in these countries,
regardless of whether or not it already exists. If you are sufficiently
intellectually bankrupt, you can then start sending invoices to companies and
even individuals demanding payment of license fees for continued use.

XML was drafted during 1995 and first published in 1996, so anyone claiming
they invented pointy-bracket self-defining hierarchically-nested structured
markup after that is probably a few elements short of a DTD. XML is based on
SGML, which is an international standard codified as ISO 8879:1986, and it
was preceded by numerous other closely-related markup systems, so anyone
claiming they invented it after that date is equally wide of the markup.

Lots of subsequent derivative technologies which owe their existence to the
SGML and XML groundwork quite possibly are valid patents, in the same way
that fire was not originally patented but matches and lighters were.

Patents were originally designed for new physical inventions. Their use for
methodologies and algorithms extended the concept into the realm of ideas,
which many people regard as deeply suspect. The patenting of natural
phenomena like genes (which are pre-existing parts of Nature like politicians or
pond scum), is meaningless and intellectually void, although legally enforceable
in the USA and elsewhere.

Copyright subsists automatically in anything you create, but in some countries
(notably the USA and France) you cannot enforce this unless you register your
interest. Copyright persists for a number of years after your death (EU: 75,
different elsewhere) in order to let your descendants benefit from sales of your
work.

Copyright is for the physical form of intellectual expression like books,
newspapers, works of art, web sites, or computer programs. It exists to prevent
others stealing your work and selling it. You can quote snippets of other
people’s work without permission, such as a line of a poem, or a bar of music,
or a sentence from a novel, provided you say whose it is and where to find it:
otherwise you need to ask permission beforehand. Copyright already provides
more than adequate protection for computer programs, making the use of
patents for them unnecessary overkill.

Intellectual Property identifies you as the owner of the thoughts and ideas
which may find their physical manifestation in patentable inventions or
copyrightable publications. Even if you sell off your patents, and for long after
your copyrights have expired, you can still be seen as the person who dreamed
up the idea, and some countries (eg the UK) allow you formally to assert your
right to be so identified, regardless of what happens to the book or the gizzmo.

You should always acknowledge the intellectual property of others, especially
when you use it in furtherance of your own aims. Pretending that someone
else’s smart ideas are your own is probably a worse offence than trying to
patent fire, water, the wheel, or XML.

75

Escaping Escaping means temporarily switching the way a program works to do
something different with the data. In SGML, it was conventional to use only
ASCII characters in your documents because keyboards, screens, and fonts for
other characters were often unavailable. To escape from the limitations of this
format for non-ASCII characters like accents and symbols a set of mnemonic
names was available, prefixed by an ampersand (&) to turn the escapement on,
and followed by a semicolon (;) to turn the it off, so an á was given as á.

XML allows you to use Unicode, so any character or symbol in any language
can be entered as itself. If you are using UTF-8 encoding in your documents,
there is no need to use escaping except for the two markup symbols (< and &).
However, not everyone has a Unicode editor, and complete Unicode fonts are
very large, so it is conventional in alphabetic languages to pick an encoding
which allows you to use the majority of the characters you need, and to use
escaping for the occasional other characters.

XML and security, privacy, and identity standards Eve

Data export A common requirement in the flat data model used in many
e-commerce systems is to export XML data to the CSV (Comma-Separated
Values) data format used as input to spreadsheets. There is a simple example of
a short script to do this here224. More complex and sophisticated routines could
easily be written using XSLT or other XML processing software. Users should
note that while conversion to CSV is adequate for simple data formats, it is an
inappropriate format for normal XML text documents which use Mixed
Content models.

Data import Many XML projects require the import of existing documents in
non-XML formats. The import of existing HTML documents is explained in How
can I make my existing HTML files work in XML? [p.22], and if you can convert
your documents to XHTML; this is probably the simplest method. OpenOffice
saves Open Document Format (ODF) files, which are the international standard
for office XML documents. Word files can be saved as WordML (2003) or Office
Open XML (2007: Microsoft’s alternative to ODF). In both cases an XSLT
transformation can be written to create a suitable XML import format. For
complex documents in other formats, however, specialist conversion software is
needed. Some XML editors are beginning to offer inbuilt conversion of other
formats, and there are many standalone conversion systems available (some at
high cost) for formats which are otherwise not easily machine-accessible via
markup, like PDF, PostScript, , Quark XPress, and most proprietary document
formats. The critical point is that almost all non-XML (non-SGML) document
are formatted to make them human-readable and pretty, not to make them
machine-readable. It is therefore often the case that the information required to
make the document meaningful in XML simply doesn’t exist in these formats.
The only alternative for this class of documents is to have them rekeyed or
scanned into XML by one of the many companies in the Indian subcontinent or
the Pacific Rim.

Text document formatting functions Because XML is a metalanguage to let you
define and name your own information structures, it has no built-in knowledge

224http://silmaril.ie/downloads/software/xml2csv.zip

76

of anything to start with. It therefore has no inherent understanding of any
document specifics like bulleted lists, sections, footnotes, or any of the common
online features like drop-down menus, forms (inputs, check boxes, radio
buttons, and text areas), scripts, mouseovers, or other bells and whistles¯these
are things which you have to use XML to define, in a DTD or Schema for your
specific application. Contrary to the impression given by some manufacturers
these things are not built into XML itself. You first choose or design a document
type (Schema or DTD) to represent your information accurately, then you can
generate effects like the above by using CSS styling, or writing an XSL[T]
transformation of your XML to HTML, Word, , PDF, or whatever other format
is capable of instantiating them.

There are additional native-XML proposals and recommendations at the W3C
for XML Forms handling, XML Linking, XML Security, and a lot of other
features, but these are architectural enabling mechanisms, not drop-in
replacements for HTML.

E.4 Lost XML software
Some of the best
software that has
disappearedThe most common cause of lost good software seems to be that the company making

it got taken over through no fault of their own, by a corporate shark who didn’t
know what they were buying, or who simply didn’t care. In these cases it wasn’t the
product that was at fault¯often it was popular and selling well; it just fell foul of
corporate stupidity.

Near&Far (MicroStar) A standalone visual (graphical) SGML DTD design tool,
originally for Microsoft Windows 95. N&F made it very easy to prototype a
new document type, although later stages of development were usually
hand-tuned. It was also an excellent tool for displaying the structure of a
newly-encountered DTD. When XML arrived, they kept the internal SGML
model but provided a save-as in XML syntax.Many current design tools have
similar embedded functionality (eg XML Spy), but there is no equivalent
standalone tool of the same quality. A development to use RelaxNG to generate
different syntaxes would be a major advance.MicroStar was bought by
OpenText Corp and the product was dropped on the floor just at the point when
it would have been most useful. If you have a copy (one was embedded in the
WordPerfect SGML/XML editor), it still executes under XP, and in Codeweavers’
Wine under Linux.

DynaWeb (EBT) A family of products: DynaBase, the underlying SGML database;
DynaWeb, a Windows server with a graphically-managed stylesheet system for
serving XML or SGML converted to HTML, and an excellent markup search
facility; and DynaTag, a GUI system for converting Word and Frame documents
to SGML or XML, based on the original RainbowMaker commandline

77

converter.EBT was bought up by Inso Corp, and the product was ignored for
several years. However, a page on Indo’s server now claims to provide details,
but it is not known if the product is still available. It appears that they
inherited some users, so for a while they still had a DynaWeb training page.The
good news is that Red Bridge Software now occupies the old EBT factory (under
the Red Bridge in Providence, RI), selling a content management system that
includes DynaTag and some other elements of the original range.

Panorama (SoftQuad) An SGML browser from SoftQuad225 with an SGML-syntax
stylesheet which worked both standalone and as a Netscape plugin, based on
Synex Viewport. This let users open direct links to SGML documents: Panorama
would download both instance and DTD via an entity resolver, perform a
tokenised parse, and apply the specified stylesheet.Its unique features included
switching between multiple stylesheets, a search result density indicator, and
the ability to implement double-ended HyTime links, which let anyone publish
their own set of links, even multi-ended links, and even between documents
that they didn’t own. The browser plugin was free, and the full version included
the stylesheet editor.SoftQuad faltered after Yuri Rubinsky passed away, and
was taken over by Corel (WordPerfect), where the product was ignored.

Note

SoftQuad’s Author/Editor SGML editor product transmuted into XMeTaL, which is still
available from JustSystems226.

If you have more information about useful products that have disappeared, please
email the editor.

E.5 Revision history

0.0 (1996-12-27) First test. Unpublished.

0.1 (1997-01-31) First draft. Sample questions devised by participants.

0.2 (1997-02-03) Revised draft. Additional questions and answers.

0.3 (1997-02-17) Extensive revision following comments from the group. Changes
to markup and organization.

0.4 (1997-02-23) Minor editorial changes

0.5 (1997-04-01) Added Multidoc Pro as SGML browser; question on XML math;
fixed ambiguity in explanation of NETs; added JUMBO; ERB changes of March
26; more details of linking and tools; adding element declaration minimisation
to the forbidden list.

1.0 (1997-05-01) Added reference to ToC and printed URIs; added disclaimer at A6;
combined old A11 with A5 to explain SGML/XML/HTML; clarified explanation
of XML not replacing HTML at C1; added new course and conference at (new)
A11; clarified B1, C4, C8; added FPI server at C12; removed examples in C13.

225http://www.users.cloud9.net/~bradmcc/panorama-1.html
226http://na.justsystems.com/

78

1.1 (1997-10-01) No more minimisation parameters in element declarations;
parsers must now pass all white-space to the application; everything is now
case-sensitive, including all markup; a new proposal for stylesheets: XSL,
which combines DSSSL and CSS in an XML format; Java[Script] and and
metadata and their use in XML; updated list of software; first XML book is
published; new public mailing list XML-L

1.2 (1998-02-01) Added a Mac icon (thanks to Martin Winter and others); removed
Draft from references to the spec; changed revision colours; the RMD is gone:
replaced references to it with standalone; updated some broken URIs; [1.21]
minor edits to URIs and updates on translation; added XUA to details of MIME
types.

1.3 (1998-06-01) Removed the math plugin (Linux Netscape is broken and refused
to elide it); updated list of events (need more); fixed some broken URIs; added
Spanish and Korean translations and the Annotated Spec; updated details of
MS/NS browser development; clarified the use of FPI vs SysiD; updated link to
Feb 10 Rec Spec; added pointers to the SGML Decl for XML; updated references
to XLink and XPointer; corrected a reference to ancient Sumerian writing;
clarified the need for conversion of HTML DTDs to XML.

1.4 (1998-10-01) Added maintainer’s email address under Availability; Added note
about ISO representation and voting on standards; added Greek translation;
updated details of conferences; changed the URI for the new SGML/XML Web
Pages; updated details of browsers; corrected reference to the SGML omitted
features from XML; updated details of converting HTML to XML; added
mention of comp.text.xml; extended the questions on graphics and how to use
XML with current browsers; added questions on DOM, conformance testing,
DTD includes, SGML DTDs into XML, EDI; (1.41) corrected errors in MIME
types, URIs, SDD, and images.

1.5 (1999-06-01) Added new XML mailing lists in Italian and in French; added
details of developer resources in Chinese; two more translations under way
(Chinese and Czech); updated links to the question on DTDs; added question on
the use of Java to generate and manage XML; added question on when to use
attributes and when to use element markup; added question on the use of XML
syntax to describe DTD data (schemas); expanded on the explanation of the use
of formal language in the spec; added question on the difference between XML
and C++; separated information on XML versions of HTML into a separate
question.

1.6 (2000-07-01) Added French and Czech translations and a Finnish mailing list,
and reorganised the list of translations; updated URIs for newsgroups; clarified
reference to Unicode; reworded question on terminology; added more links to
the question on conformance testing; corrected error in content model example
for mixed content; updates to the question on stylesheets; Minor edits to the
question on software; major changes to the question on servers and media
types; updated question on XML Schemas; added new question on ‘executing’
XML ‘programs’; replaced the math example with one less likely to distress the
gentle susceptibilities of some readers; added a new question on knowing
SGML/HTML before XML.

79

2.0 (2001-06-01) DTD changed from DocBook SGML to QAML XML; removed
query form due to abuse; most questions revised and in some cases rewritten;
updated references to new versions of associated standards, recommendations,
and working drafts; added pointer to Jon Noring’s Unicode test page and NIST’s
XSLT/XPath test suite; updated Eve Maler’s links to the DTD for the spec; added
warnings on speling and punk chew asian; added question on namespaces;
fixed bug in question on stylesheets; inserted explanation of ‘document’ vs
‘data’ software; added new mailing list on XSL:FO; updated Robin Cover’s URI
throughout; updated the question on media types for RFC 3023; Extended
question of graphics to cover SVG. For 2.01 there were minor typos, some
updated links (to recent versions of the standards, and in the section on More
Information), and a few wording changes. Thanks to James Cummings for a
very thorough proofread. Editing was done using GNU Emacs and psgml-mode.

2.1 (2002-01-01) Added Humanities mailing list [p.8]; added more references for
XML and databases [p.51]; added the Namespaces FAQ; corrected some
misunderstandings in character encodings [p.27]; changed the editor’s email
address; added a new question on root elements [p.31]; updated the XLink
[p.33] to W3C Recommendation; updated the SGML FAQ address [p.2]; fixed
some broken links; added translations into German [p.v] and Amharic [p.v];
minor revisions to some wording. Editing this time was done in epcEdit
1.02227. V2.11 includes new material on expectations and XML browsers
[p.16], the removal of a mailing list, and a few corrections to typos and links.
Thanks to Seán Cannon and Dave&Nikki for debugging the CSS style-sheet.

3.0 (2003-01-01) Added information on Office Applications [p.19] including Corel,
Microsoft, and Sun (to keep alphabetical order :-); updated details of
conferences and training [p.6]; updated browser [p.16] details; reworded a few
ungainly sentences; removed some obsolete URIs (mostly for nice idea sites
which died); changed the phrasing of the question on databases [p.51]; added
details on how to do standalone validation to the question on parsing [p.37]
(thanks to Bill Rayer); added question on how to present XML to management
[p.56] (thanks to Tad McClellan); the questions on APIs and the DOM have been
subsumed into the question on software [p.52], which has been extensively
rewritten; added yet more explanation to the section on Unicode [p.26]; 3.01
fixes minor typos; 3.02 adds updated dates for 2004 events.

3.01 (2004-01-01) Minor typographic changes

3.02 (2004-01-12) Added updates for 2004 events

4.0 (2005-01-01) Went back to DocBook228 markup using qandaset229 instead of
the QAML that has been used for the last two major releases. Revised text in
most sections for clarity in wording, and recast some now-established
explanatory material into the past tense. Added new dates for 2005. Added
explicit references to the GNU FDL in the legal section. Took the tip on types of
XML out into a new question [p.53], and added new questions on file inclusions
[p.38] and the use of CDATA Marked Sections [p.40].

227http://www.epcedit.com
228http://www.docbook.org/
229http://www.docbook.org/tdg/en/html/qandaset.html

80

4.1 (2005-05-15) Revised structure and new stylesheet for new location at
http://xml.silmaril.ie/. The four main sections remain, but the text is served
in separate questions and sections rather than one huge file (the PDF remains as
a single document, of course). Removed references to the now-defunct Balise
language, added a Tip on editor selection and some notes on WYSIWYG XSL[T]
editing.

4.2 (2005-07-01) Added new RNG mailing list [p.8], updated section on Schemas
[p.31], added links to the XML Declaration for SGML [p.48]. Retagged personal
names for recognition, and ID’d related FAQs. Expanded question on Why XML.
Added link to email a page to someone. Added and expanded the tips on ways of
getting typeset output, eg . Added new section on special characters.

4.3 (2005-09-05) Added the notes culled from failed searches as a Glossary [p.65];
updated some URLs, and added one for XQuery to the question on databases
[p.51] (thanks, Liam); updated What is XML for? [p.1], What does an XML
document actually look like (inside)? [p.11], What is parsing and how do I do it in
XML? [p.37], and the question on CDATA Sections [p.40]. Added a new question
on Conditionals [p.61]. Tightened up on the indexing for searches, including the
removal of enclosing quotes, and added a bunch more metadata.

4.31 (2005-09-09) Added notes on Pipelining [p.72] and Attributes [p.72].

4.32 (2005-09-10) Added details of xml:id to the note on Attributes [p.72].

4.33 (2005-09-12) Added more keywords, and a tip to the note on asp.net [p.67].

4.34 (2005-10-01) Split the question on CDATA into two: one for CDATA per se,
and one for other ways of handling embedded HTML. Added some more
keywords, and revised the questions Where can I discuss implementation and
development of XML? [p.7] and What is the difference between XML and C or C++
or Java? [p.9]. Fixed a minor date bug in the search script.

4.35 (2005-10-08) Fixed some broken links and removed a couple of obsolete ones.
Added a note about the BOM.

4.36 (2005-10-16) Updated dates of events in Where do I find more information
about XML? [p.6].

4.37 (2005-10-31) Removed ambiguities in How do I include one XML file in another?
[p.38].

4.38 (2005-11-01) Added personal views on patent, copyright, and intellectual
property.

4.39 (2005-12-01) Refined some keywords, changed presentations of some
examples, reworded a paragraph on treatment of space, and added details of
assigning a Schema to an instance.

4.4 (2006-01-01) Minor grammatical edits, major changes to the indexing and DC
metadata. Added glossary entry on data export to CSV and expanded the
description of nodes and the grove. Fixed elusive bug in RSS feed. Added
contributor names to search index.

4.41 (2006-01-07) Fixed a cross-referencing bug in generated content.

81

4.5 (2006-02-27) Added more keywords taken from failed searches. Expanded on
file URIs, the use of compiled DTDs, self-describing data, the boolean nature of
parameter entity switches, how to get HTML features (forms, etc).

4.51 (2006-02-28) Added explanation of xml:is, xml:space, and xml:lang. Added
new question on how to read (open) an XML file you have been sent.

4.52 (2006-03-26) Added more keywords and fixed a broken link to the XSL FAQ.

4.53 (2006-04-12) Updated details of XML for Safari, and added a curious new
enquiry.

4.54 (2006-06-01) Corrected an error in the description of xml-stylesheet. Added
link targets to Quick Answers.

4.55 (2007-08-01) Updated events for 2007˘2008. Updated details of ODF and
OOXML. Added section on broken software. Revised handling of failed searches.

4.56 (2007-08-08) Added details and links for HTML5

4.57 (2010-02-27) Updated events, added interim changes to formatting in
preparation for extensive relaunch later in 2010.

4.58 (2010-04-24) Updated events, removed XML Prague, added Balisage
Symposium

82

