
Understanding SGML and XML Tools 327

such items called a list does not exist. However, some more advanced
systems do recognize a very small amount of hierarchy (perhaps ‘se-
quentiality’ would be a better word): Microsoft Word has named styles
for ‘continuation items’.

It is on hooks like this that DynaTag can hang its markup. You map
input styles to output elements, either named or based on combinations
of styles represented in the conversion. Style information can be applied
to the derived markup, which can then be saved as a separate stylesheet
(see Figure 104).

The use of an intermediate format to enable accurate mapping makes
this one of the most powerful tagging applications available. The graph-
ical interface only runs under MS-Windows, but the mappings can
be saved and used in the Unix batch product, which will perform
command-line driven conversions for the same document type pairs
(input of a word processor file in that format and output according to
the specified DTD).

5.3.3. SGML Author for Word (Microsoft)

Version 1.1 for MS-Windows

http://www.microsoft.com/

Despite its name, this is a conversion tool, not an editor or authoring
program. It’s a plug-in for Microsoft Word (6 or 7) which enables Word
documents to be saved as SGML files or loaded from SGML files, using
a mapping between DTD and stylesheet.

The objective is to allow Word users to continue using Word without
knowing anything about SGML (possibly not even that it exists), but
enable their files to be used in SGML systems; or to take SGML files and
produce Word versions which can be re-imported into SGML afterwards.

This will obviously only work if the users can be trained to stick
rigidly to a predefined set of styles and never depart from them. Pro-
vided this is done, however, it is possible to use the context of the styles
to map to a DTD and vice versa, and thus to provide translation in both
directions.

Once this is established, it would be possible to maintain your cor-
porate or institutional information base in SGML, but have authors
create and update the texts using Word.

5.3.3.1. Setting up

Setting it up may cause some problems: support is difficult to get, even
in the USA, as Microsoft’s own HelpDesk staff are largely unaware

sgmlbook.tex; 16/04/1998; 19:48; p.353

328 Peter Flynn

of the program’s existence. It was apparently not intended to be used
(or even available) outside the USA, although a number of non-US
institutions are now reported to be using it. If you have access to
Microsoft’s Select installation CD-ROMs, especially outside the USA,
install it from them in preference to the retail package.

If you have to install from the retail package, make sure that once
you have Word 7 installed, go to the ToolsjOptions menu item, click on
the File Locations tab and check that both jUser Templates and jWorkgroup
Templates have file locations associated with them (I am indebted to
Brian Widman for this tip). Then start installing SGML Author for Word.
If it claims you don’t have Word installed, you may need to manually edit
your Registry to provide the ‘right’ entries: unfortunately it provides
no clues as to what it needs, so you may want to call their HelpDesk at
this stage.

Once it’s installed, it adds jSave as SGML to the File menu and cre-
ates some new directories in your Word installation folder. There is nojOpen as SGML because all files opened are native Word files. If you have
installed (or are going to install) Microstar’s Near&Far Author for Word,
which is an editor, you should familiarize yourself with the distinction
between the menu items which SGML Author for Word adds to the Save

dialog and those which Microstar’s software adds (the ‘Save As…’ file
type jSGML - Near&Far Author).

The manual is reasonably clear, and makes a good effort at explaining
what you need to know at each stage, but it aimed at the administrator,
not the end user, so it does require a significant level of understanding
of text and text-handling, well above the level needed for general office
word processing. This is probably acceptable, given that the apparent
intention is to shield the end user from the SGML bits. One thing it
does make very clear is why this is just a conversion engine: why write
a new editor when you have a working one already?

The mechanics of setting up a conversion are fairly intricately ex-
plained, although if you already know SGML, and have worked with
stylesheets before, a lot of it begins to look familiar after a while:

● You need to have a DTD, of course, and the SGML Declaration if
needed;

● There’s a catalog file provided, entm.cat, in standard format but
with the PATH keyword on the first line giving the directory paths
to search for relative file (System identifier) references. Your DTD
file(s) need to be entered in this catalog;

● You create a ‘declaration file’ with the file type .dcl for each DTD
you use, in which goes a copy of the SGML Declaration followed
by the DocType Declaration — but not the DTD itself.

sgmlbook.tex; 16/04/1998; 19:48; p.354

Understanding SGML and XML Tools 329

● You bind the element names from the DTD to stylesheet styles in
a .map file, which you create using menus in SGML Author for Word.

The .dcl file type is an unfortunate choice, as it is already used by
many DTDs for their own SGML Declaration, which will probably not
contain a DocType Declaration at the end, so some renaming or careful
directory selection is needed. If you are using a technical DTD for math,
and you want conversion to or from the Word equation editor, you need
to modify the DTD to include the equation fragment provided (based
on the ISO TR 9573 fragment: see section 2.3.8.1.1). You get a warning
if this is not done: there’s a sample skeleton.dtd supplied which serves
as an example of how to use it.

5.3.3.2. Operation

Converting from SGML to Word or vice versa means assigning a template
file to your DTD, which is done from the FilejNew menu the first time
round by picking a template and a .dcl file. If you don’t have any
templates of your own (this would apply if you don’t use Word and are
perhaps preparing conversions for people who do), you can pick one of
the standard Word ones in \MSOffice\Templates*, which is the proper
place (unfortunately it’s not where the FilejNew menu looks for them).
Clicking on the .dcl file which you created for your DTD starts the
parsing of the DTD and reads the template file. Any parser errors at
this stage pop up in an edit window, and have to be corrected before
you can proceed.

The catalog file provided unfortunately fails to include the ISO Box
and Line Drawing character entity file, the Russian Cyrillic, Non-Russian
Cyrillic, and Alternative Greek Symbols ones: you may not use them
but some DTDs reference them and won’t validate without them un-
less you disable the references or add the files to your file system and
include the relevant lines in the catalog.

By far the most lengthy part is setting up the associations between
Word’s stylesheet descriptors and the elements of your DTD. The dis-
play gives both side-by-side (see Figure 105) so the mechanics of it
are fairly simple. However, the DTD elements are displayed in a form
which makes available every possible variant of element combinations
that is possible, and by default expects you to establish a style for all of
them. You just ignore the ones you don’t want, but it clutters the panel
somewhat.

It is logically not possible to associate a style descriptor with more
than one element or descendancy, because to do so would defeat the
objective of providing a consistent mapping from stylesheet to DTD.
This means that associating <para> with paragraph-style Normal, for

sgmlbook.tex; 16/04/1998; 19:48; p.355

330 Peter Flynn

Figure 105. Associating an inline element with a character style descriptor in SGML
Author for Word

example, makes it impossible to associate any other element with the
Normal style, and if you try, it will keep trying to tell you that what you’re
setting up is a paragraph. You can, however, specify a default structural
markup conversion (referred to as ‘not in Mixed Content’, which de-
faults to paragraph-style Normal) and a default inline markup conver-
sion (referred to as ‘in Mixed Content’, which defaults to character-style
annotation reference).

You can supply associations for inclusion elements, and for specific
attribute values on elements. For Word conversion into SGML, you can
establish default values for required attributes.

Because of the complexity of the setup, a detailed study of typical
documents for the given DTD is essential before you start. It would
also be useful to generate a list of the elements actually used, with
their frequency of use. This will make it much easier to see where you
need to concentrate your association efforts.

Once it’s done, you save the association (.dta) file. This will take
a few minutes, as the files take a frightening amount of disk space: in
tests, an association file for the DocBook DTD took 8.5Mb even with
version 1.1 (which the help documentation claims has been optimized

sgmlbook.tex; 16/04/1998; 19:48; p.356

Understanding SGML and XML Tools 331

for use with a 32–bit operating system: ‘these performance improve-
ments include an increase in speed, and a decrease in the size of the
association file’).

Finally, you can open a .sgm file in Word, pick the .dta file, and let
it convert. It’s fairly slow, and needs a lot of disk space: conversion of
a 66Kb instance needed around 40Mb of temporary disk. Provided you
have taken care in setting up the associations, the results are very good,
and for bulk conversion the time and effort spent should be worth it.

The conversion process uses a considerable amount of smarts to
achieve what the documentation describes as a ‘least-cost’ path to the
conversion of unspecified or unspecifiable element combinations. This
probably accounts for the slow speed by comparison with Balise, Omni-
mark, or SGMLC. The manual emphasizes that you test any conversion
setup by using the standard ‘round-trip’ methodology. This means con-
verting circularly back into the format the document was originally in,
and then studying the results to see what got lost in the process.

5.3.4. Roustabout (Apropos)

Mac, PC/Win

http://www.attd.com/

Roustabout is a specialist program from Apropos Toy and Tool Develop-
ment for converting files QuarkXPress export files into SGML.

QuarkXPress is one of the most popular and extensible page layout
systems for Apple Macs and Windows 95 PCs. Its native file format is a
binary ‘end-system’ for internal use, but the system provides a plaintext
export format called Xpress Tags or ‘Xtag’ format, and it is this format
that Roustabout translates. Roustabout is written in Java and can read
Xtag files produced for both Mac and PC versions of QuarkXPress, with
or without stylesheet formatting.

Roustabout uses a name mapping file to specify the translation be-
tween the QuarkXPress stylesheet names and the DTD element names
(see Figure 106). Because QuarkXPress is restricted to the simple two-
level model of paragraph styles containing character styles (see sec-
tion 3.2), it is not possible to map structures any more deeply unless
you use an SGML editor to post-process the output. The mapping spec-
ification files are themselves in SGML format, and the system can also
produce XML with a suitable DTD.

The Roustabout program comes as a zipfile of some 250 classes: there
is a demo version on the CD-ROM, limited to the first 5,000 characters
of input.

sgmlbook.tex; 16/04/1998; 19:48; p.357

