
Understanding SGML and XML Tools 181

and removed (or renamed) at will — the assumption being that you are
going to use an external parser/validator from time to time.

Other tabs allow the entry of entity declarations and notations. The
whole DTD under development can be stored in binary form or ex-
ported to the standard plaintext file for inspection and saving. The
program is at an early stage of development, so there are some rough
edges, but the concept of a simple graphical interface to schematic-style
entry is an attractive one.

2.6.6. NormDTD (Richard Light)

MS-DOS

ftp://ota.ox.ac.uk/pub/ota/TEI/software/

This is a public domain DOS program written by Richard Light (au-
thor of the SGML Tagger, see section 3.4.4) to handle those occasions
where an SGML system cannot accept the complexity of large DTDs
with deeply nested marked sections and parameter entity references to
external files.

It ‘flattens’ the DTD to a single file, duplicating where necessary
all the references that were previously handled by parameter entities.
The element content models in this normalized DTD will not contain
any references to elements that are not declared, and so it can be used
by highly-strung packages such as RulesBuilder (see section 3.3.2.3)
that refuse to process such applications (the TEI in particular: see
section 2.3.6) for this reason.

2.6.6.1. Installation

NormDTD is supplied for download as a self-extracting executable,
normdtd1.exe, from the Oxford Text Archive’s public FTP server, in
the TEI software directory. This program expands in the same direc-
tory where it is run to the application itself, normdtd.exe, a low-memory
version normlow.exe, and a subsidiary executable taggerrd.exe with an
overlay for use where memory constraints require the process to be run
in separate stages.

2.6.6.2. Operation

The command line for execution is normdtd dtdfile outputfile If the
output file exists, the program stops, so any output from a previous
run of the same name must be deleted manually first. If you don’t give
an output file name, one will be created with the same name but the
filetype .dtn

sgmlbook.tex; 16/04/1998; 19:48; p.207



182 Peter Flynn

Figure 61. NormDTD normalizing the TEI DTD

There are some uneven patches in NormDTD, so the author suggests
‘you should run a parser over the resulting normalized DTD to check
for hanging separators and ambiguous context models’. In practise this
means checking that there are no content models ending

<!ELEMENT LG - O
((HEAD)*, (L | LG)+, )
>

where the extra comma is left ‘hanging’ after the plus sign, and needs
removing. This takes only a few seconds with the repeat-replace func-
tion of any text editor (and for the whole TEI it occurred just twice).

The software has been reported to hang when presented with an
invalid DTD, so it is wise to parse and validate your application and
check that it is ‘clean’ before trying to normalize the DTD.

2.6.7. SP (James Clark)

Unix, DOS/Windows

http://www.jclark.com/sp/

James Clark’s SP package contains several programs which can be used
in DTD development, but as the core of the package is concerned with
parsing, the tools are dealt with more fully in section 4.3.5. I’m confin-
ing this section to the validation and processing of DTDs, rather than
instances, although the program used is the same (nsgmls, the principal
component of the SP suite).

Many DTDs are still written or maintained by hand in a plaintext
editor, for a variety of reasons, not the least of which is the lack of

sgmlbook.tex; 16/04/1998; 19:48; p.208



Understanding SGML and XML Tools 183

software for large-scale DTD project development and code manage-
ment. Parsing and validating a DTD frequently and rigorously during
development is vital, in order to catch any errors before they become
compounded.

To validate a DTD, you can just use nsgmls with the option -p (only
parse the Prolog, and suppress any output), and -f (to redirect error
messages into a file for examination):nsgmls -pfmydtd.err my.dtdThe
-s option, used when parsing instances to suppress the output, is im-
plied by the -p option.

The options specifying the use of ancillary files require the filename
directly after the letter (no space after the option). Nsgmls assumes the
default catalog file is called catalog in the current directory, or in the
location specified by the -c option:

nsgmls -pfmydtd.err -cmycat.cat my.dtd

If you are using Emacs and psgml, you can press Ctrl–C Ctrl–V, which
runs nsgmls on the current buffer (file) and traps the error messages to
a window, but you’ll have to edit the command line to put in the -p
by hand, as the default is intended for validating whole documents. If
there are errors, a keyclick on an error message will jump you to the
file in question and place the cursor at the point of error. If you’re using
MS-Windows, you can install RunSP, which is a windowing shell for
nsgmls: see section 4.3.5.1.

Because Emacs expects a DocType Declaration at the top of the file, if
you get the following message when using nsgmls this way:

c:\sp\bin\nsgmls:my.dtd:20:2:E: "ENTITY" declaration not
allowed in prolog

it means you’re probably trying to validate a DTD file. Instead, create a
1-line SGML file containing the DocType Declaration, referencing your
DTD file with a System or Public Identifier (in effect, a document with
a missing instance) and validate that instead.

XML parsing is slightly different. Quite apart from the additional
constraints of XML syntax, a DTD may or may not be specified, and
if it is, it may be retrievable from the Internet using a URL, rather
than from a local file. The version of nsgmls distributed with the Jade
converter/formatter (see section 5.2.4) has XML support, and this is
on the CD-ROM. James Clark has also written XP, an XML parser in
Java (see section 4.3.7.2)

The method of normalizing or ‘flattening’ a heavily parameterized
DTD that I have referred to elsewhere for several DTDs can partly be
done with the spam program using the following options:

spam -mms -ppxxfmyfile.err myfile.dtd >newfile.dtd

sgmlbook.tex; 16/04/1998; 19:48; p.209



184 Peter Flynn

The ms value for the -m option removes all IGNOREd Marked Sections and
unmarks all INCLUDEd Marked Sections; the -p option (twice) outputs
the Prolog (SGML Declaration and DTD) and expands any entity ref-
erences between declarations; and the -x option (also twice) expands
all references to entities that contain tags. The error output (if any) is
redirected into a file with -f, and the output (the flattened DTD) is
written to the final filename (the > is a Unix and DOS technique to
redirect output away from the terminal screen and into a file).

2.6.8. Carthage (Michael Sperberg-McQueen)

Unix

ftp://ftp-tei.uic.edu/pub/tei/sgml/grammar/carthage/

Michael Sperberg-McQueen wrote Carthage to overcome one of the
problems encountered when compiling the full TEI DTD in systems
which object to elements being referenced but not declared. The prob-
lem is explained in more detail in section 3.3.2.

This is a C program written for Unix, called carthago (for elements
which are to be deleted; a subtle scholarly joke for those who know
Latin: ‘delenda est Carthago’). It reads a DTD and rewrites it, syn-
tactically omitting from content models any elements which are not
declared, where this is possible (on some occasions it cannot do all of
them, for example if an element is marked as compulsory: further cor-
rections have to be done manually). It can also delete IGNORE Marked
Sections, detect entities declared more than once, and expand all pa-
rameter entities.

The software is offered ‘as-is’ (unsupported, and for regular SGML
only at the moment) from the TEI FTP server at the University of
Illinois at Chicago.

2.6.9. Fred (OCLC)

Unix

shafer@oclc.org

Before the days of easily obtainable (and especially, networked) infor-
mation about SGML, misconceptions such as those explained in sec-
tion 1.5.3 were even more widespread than they are today. Among the
most pernicious was (is still, perhaps) the belief that SGML is just the
act of making up some ‘tag names’ in pointy brackets and putting them
in a file with your text. While XML goes a long way towards making

sgmlbook.tex; 16/04/1998; 19:48; p.210


