
18 Peter Flynn

Figure 6. What you never see: the internal storage format of a word processor file,
revealed by using a standard plaintext editor

1.5.1.3. Different uses for markup

By now it is becoming clear that if you wanted to search all your word
processor documents for the chapter or section headings, or all refer-
ences to scientific names, or mentions of other documents by title, or
all phrases that were emphasized, or personal names, or product names
(the list can go on and on) you couldn’t just search for italics or bold,
because your computer would have no way to distinguish the different
uses: you’d just get all the other italics and bold coming out as well,
and you’d have a huge manual task to disambiguate them.

The reason for this is that italics, bold, etc in themselves have no
actual meaning: as we’ve seen, it’s the conventions we associate with
them that we are really looking for. Scholars call this ‘semantics’, the
association of meaning with a symbol. All the typeface on its own says
is, in effect, ‘hello, I’m a different-looking style of type’; it then leaves
it up to the reader to know already what that means.

While this is just fine for printing, it is not adequate if you want the
computer to be able to use the meaning attached to a phrase, rather
than simply the appearance. After all, the use of bold type and spacing
for headings varies widely between users, designers, publishers, and

sgmlbook.tex; 16/04/1998; 19:48; p.44



Understanding SGML and XML Tools 19

applications, and doesn’t have any ‘meaning’ on its own anyway. What
is important about the phrase ‘Soft cheeses’ above is that it is a heading,
quite distinct from any other use of the same words in the sentence that
follows it. While its appearance is critically important for presentation
to a human reader, it is usually quite unimportant in terms of storage
and recognition by computer.

So in addition to identifying behavior (like changes in appearance),
markup can let you describe certain parts of the text according to their
function or meaning. In the examples above, we used mostly visual
markup, because this is commonly used when printing is the only ob-
jective. However, there are lots of other things that people may want
to do with your text apart from print it:

● display it on a screen (a bit like printing, but with printing you
control the paper: you may not be able to control what kind of
screen your reader has);

● archive it: preserve it over the passage of time, regardless of the
system used to write it with;

● send it to someone else: transfer it to some other computer system;
● transfer it to a million other systems by putting it onto the World

Wide Web;
● put it into a database or searching system so that people can refer

to it and extract topics from it;
● repurpose it: a report can become a chapter of a manual; an arti-

cle in the in-house magazine can become a story for the press; a
research note can become part of a training system;

● print it again, but in a different style, perhaps in large type, or in
Braille;

● turn it into a spoken recording, or a script for video use;
● analyze it for content, for research purposes.

To do all this kind of thing we need to use the markup to indicate
the meanings, reasoning, or purpose behind the text, rather than just
its appearance, and let the appearance be specified separately. This
use of markup is called logical markup, because it can be processed
by computer logic (the terms ‘visual’ and ‘logical’ markup are from
an article by Leslie Lamport[28]). Using logical markup you can call
a heading a heading, a list a list, a paragraph a paragraph, and leave
it to a style sheet to specify how each of those elements appears. By
separating form from function, you can immediately make your text
more usable, because the very uses to which it can be put are no longer
cast in concrete.

In some applications, it is extremely important to impose a struc-
ture, to prescribe what can and cannot go where. Office reports, letters,

sgmlbook.tex; 16/04/1998; 19:48; p.45



20 Peter Flynn

and memos; job applications; technical descriptions and specifications
or manuals; books, periodicals, articles, and essays; all of them tend to
use a structure where some pieces of information are essential (com-
pulsory) and others are optional. Prescriptive markup defines what is
needed and what is permitted (software is available which can help en-
force compliance with prescriptive markup):

● my sister-in-law is a journalist: her articles must have a title, date,
and byline (her name) on them, otherwise she won’t get paid;

● letters or email messages must have the recipient’s name and ad-
dress, or they won’t get delivered; they ought to have the date,
usually a subject and at least one piece of textual content; they may
have many more pieces of text of various kinds; and they must have
the name and address of the sender;

● when you apply for a job, you have to give your name, address, your
work experience, and a variety of other information, but some
things are optional, like your hobbies.

There are also times when you want to indicate the existence of some
special class of information, but it may or may not have a specific visual
appearance. A good example is index keywords, place names, personal
names, and other items readers want to be able to look up, but which
just print as regular text. This is descriptive markup: if you look up
‘email’ in the index, you’ll find an entry referring to this page, but
there’s nothing special about the word: it has no special appearance, I
just marked it for indexing.

Frequently you get descriptive and prescriptive markup, as well as
visual and logical markup, working together: some pieces of informa-
tion are essential for the immediate needs, others are there for future
use.

1.5.1.4. Markup using SGML

SGML is a language which lets you define systems of markup to de-
scribe things in a way that a computer can use and reuse. It works on
the principle that documents are typically made up of repeated occur-
rences of basic elements, like a house is built of many individual bricks,
doors, windows, pieces of wood, fixtures, and fittings. For a house, the
architect’s plan describes what goes where; for an SGML document,
the Document Type Definition (DTD) performs this task.

The basic elements for a building can be combined in different ways
on different occasions to produce different kinds of structure called
‘a house’: for instance a bungalow, a town-house, a country mansion,
or an inner-city tenement. A different combination, excluding some
elements and including some new ones, is needed to produce instances

sgmlbook.tex; 16/04/1998; 19:48; p.46


